
Handbook of Group Actions
副标题:无
分类号:
ISBN:9787040413632
微信扫一扫,移动浏览光盘
简介
群和群作用是数学研究的重要对象,拥有强大的 力量并且富于美感,这可以通过它广泛出现在诸多不 同的科学领域体现出来。 此多卷本手册由相关领域专家撰写的一系列综述 文章组成,首次系统地展现了群作用及其应用,内容 囊括经典主题的讨论、近来的热点专业问题的论述, 有些文章还涉及相关的历史。季理真、帕帕多普洛斯 、丘成桐编著的《群作用手册(第Ⅰ卷)(精)》填补了 数学著作中的一项空白,适合于从初学者到相关领域 专家的各个层次读者阅读。
目录
Part Ⅰ Geometries and General Group ActionsGeometry of Singular Space Shing-Tung Yau1 The development of modern geometry that influenced our concept of space2 Geometry of singular spaces3 Geometry for Einstein equation and special holonomy group4 The Laplacian and the construction of generalized Riemannian geometry in terms of operators5 Differential topology of the operator geometry6 Inner product on tangent spaces and Hodge theory7 Gauge groups, convergence of operator manifolds and Yang-Mills theory8 Generalized manifolds with special holonomy groups9 Maps, subspaces and sigma models10 Noncompact manifolds11 Discrete spaces12 Conclusion13 AppendixReferencesA Summary of Topics Related to Group ActionsLizhen Ji1 Introduction2 Different types of groups3 Different types of group actions4 How do group actions arise5 Spaces which support group actions6 Compact transformation groups7 Noncompact transformation groups8 Quotient spaces of discrete group actions9 Quotient spaces of Lie groups and algebraic group actionsI0 Understanding groups via actions11 How to make use of symmetry12 Understanding and classifying nonlinear actions of groups13 Applications of finite group actions in combinatorics14 Applications in logic15 Groups and group actions in algebra16 Applications in analysis17 Applications in probability18 Applications in number theory19 Applications in algebraic geometry20 Applications in differential geometry21 Applications in topology22 Group actions and symmetry in physics23 Group actions and symmetry in chemistry24 Symmetry in biology and the medical sciences25 Group actions and symmetry in material science and engineering26 Symmetry in arts and architecture27 Group actions and symmetry in music28 Symmetries in chaos and fractals29 Acknowledgements and referencesReferencesPart Ⅱ Mapping Class Groups and Teichmiiller SpacesActions of Mapping Class GroupsAthanase Papadopoulos1 Introduction2 Rigidity and actions of mapping class groups3 Actions on foliations and laminations4 Some perspectivesReferencesThe Mapping Class Group Action on the Horofunction Compactification of Teichmiiller SpaceWeixu Su1 Introduction2 Background3 Thurston's compactification of Teichmiiller space4 Compactification of Teichmfiller space by extremal length5 Analogies between the Thurston metric and the Teichmiiller metric6 Detour cost and Busemann points7 The extended mapping class group as an isometry group8 On the classification of mapping class actions on Thurston's metric9 Some questionsReferencesSchottky Space and Teichmiiller DisksFrank Herrlich1 Introduction2 Schottky coverings3 Schottky space4 Schottky and Teichmfiller space5 Schottky space as a moduli space6 Teichmiiller disks7 Veech groups8 Horizontal cut systems9 Teichmiiller disks in Schottky spaceReferencesTopological Characterization of the Asymptotically Trivial Mapping Class GroupEge Fujikawa1 Introduction2 Preliminaries3 Discontinuity of the Teichmfiller modular group action4 The intermediate Teichmiiller space5 Dynamics of the Teichmiiller modular group6 A fixed point theorem for the asymptotic Teichmiiller modular group7 Periodicity of asymptotically Teichmiiller modular transformationReferencesThe Universal Teichmiiller Space and Diffeomorphisms of the Circle with HSlder Continuous DerivativesKatsuhiko Matsuzaki1 Introduction2 Quasisymmetric automorphisms of the circle3 The universal Teichmiiller space4 Quasisymmetric functions on the real line5 Symmetric automorphisms and functions6 The small subspace7 Diffeomorphisms of the circle with HSlder continuous derivatives8 The Teichmiiller space of circle diffeomorphismsReferencesOn the Johnson Homomorphisms of the Mapping Class Groups of SurfacesTakao Satoh1 Introduction2 Notation and conventions3 Mapping class groups of surfaces4 Johnson homomorphisms of Aut Fn5 Johnson homomorphisms of A4g,16 Some other applications of the Johnson homomorphismsAcknowledgementsReferencesPart Ⅲ Hyperbolic Manifolds and Locally Symmetric SpacesThe Geometry and Arithmetic of Kleinian GroupsGaven J. Martin1 Introduction2 The volumes of hyperbolic orbifolds3 The Margulis constant for Kleinian groups4 The general theory5 Basic concepts6 Two-generator groups7 Polynomial trace identities and inequalities8 Arithmetic hyperbolic geometry9 Spaces of discrete groups, p, q E {3, 4, 5}10 (p, q, r)-Kleinian groupsReferencesWeakly Commensurable Groups, with Applications to Differential GeometryGopal Prasad and Andrei S. Rapinchuk1 Introduction2 Weakly commensurable Zariski-dense subgroups3 Results on weak commensurability of S-arithmetic groups4 Absolutely almost simple algebraic groups having the same maximal tori5 A finiteness result6 Back to geometryAcknowledgementsReferencesPart Ⅳ: Knot GroupsRepresentations of Knot Groups into SL(2, C) and Twisted Alexander PolynomialsTakayuki Morifuji1 Introduction2 Alexander polynomials3 Representations of knot groups into SL(2, C)4 Deformations of representations of knot groups5 Twisted Alexander polynomials6 Twisted Alexander polynomials of hyperbolic knotsAcknowledgementsReferencesMeridional and Non-meridional Epimorphisms between Knot GroupsMasaaki Suzuki1 Introduction2 Some relations on the set of knots3 Twisted Alexander polynomial and epimorphism4 Meridional epimorphisms5 Non-meridional epimorphisms6 The relation≥on the set of prime knots7 Simon's conjecture and other problemsAcknowledgementsReferences
Handbook of Group Actions
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×
