
Pattern recognition with neural networks in C++
副标题:无
作 者:(美)[A.S.潘迪]Abhijit S.Pandya,(美)[R.B.梅西]Robert B.Macy著;徐勇等译
分类号:
ISBN:9787505350885
微信扫一扫,移动浏览光盘
简介
本书目是引导人们在模式识别领域实际应用人工神经网络。书中对每个网络示例给出直观解释,并运用严格的数学方法加以论证和扩充。本书给出神经网络的C++实现程序,描述了论题的解释图表和方法,主要包括:概述、预处理、有监督学习的前馈网络、其它类型的神经网络、特征提取、Kohonen网络和学习矢量量化、神经联想记忆和Hopfield网络、自适应共振理论、神经认知机和多分类器系统。
本书适用于计算机及工科专业的大学师生、研究生及有关专业人员。
目录
目录
参考书与文献
9、2、1 一个自联想LAM例子
9、3 Hopfield网络
9、4 Hopfield网络的一个范例
9、5 讨论
9、6 位图范例
9、7 BAM网络
9、8 一个BAM网络范例
参考书与文献
第十章 自适应共振理论(ART)
10、1 概述
第二章 神经网络概述
10、2 寻求聚类结构
10、3 矢量量化
10、3、1 VQ举例1
10、3、2 VQ举例2
10、3、3 VQ举例3
10、4 ART基本原理
10、5 稳定性和可塑性两难问题
10、6 ART1:基本工作方式
10、7 ART1:算法
10、8 增益控制机制
2、1 生物神经网络概述
10、8、1 增益控制举例1
10、8、2 增益控制举例2
10、9 ART2模型
10、10 讨论
10、11 应用
参考书与文献
第十一章 神经认识机
11、1 引言
11、2 网络的结构
11、3 神经认识机的一个例子
2、2 背景
参考书与文献
第十二章 多分类器系统
12、1 综述
12、2 多种识别器组合成的系统结构
12、3 投票方案
12、4 混淆矩阵
12、5 可靠性
12、6 一些经验方法
参考书与文献
2、3 生物神经网络
2、4 大脑中的分层组织
2、5 历史背景
2、6 人工神经网络
参考书与文献
第三章 预处理
第一章 引言
3、1 概述
3、2 扫描图像的处理
3、3 图像压缩
3、3、1 图像压缩的例子
3、4 边缘检测
3、5 骨架处理
3、5、1 细化的例子
3、6 处理手写板输入
3、7 图像的分割
参考书与文献
1、1 模式识别系统
第四章 有监督学习的前馈网络
4、1 前馈多层感知器结构
4、2 用C++实现前馈多层感知器
4、3 利用B-P算法进行网络训练
4、3、1 用C++实现B-P算法
4、4 一个基本例子
4、5 训练策略和避免局部最小
4、6 梯度下降中的变量
4、6、1 块适应和数据适应梯度下降方法的比较
4、6、2 一阶和二阶梯度下降方法的比较
1、2 人工神经网络方法的产生
4、7 拓扑
4、8 ACON和OCON的比较
4、9 过训练和推广
4、10 训练集合和网络大小
4、11 共轭梯度方法
4、12 ALOPEX
参考书与文献
第五章 其它类型的神经网络
5、1 概述
5、2 径向基函数网络
1、3 模式识别序言
5、2、1 网络结构
5、2、2 RBF训练
5、2、3 RBF网络的应用
5、3 高阶神经网络
5、3、1 引言
5、3、2 结构
5、3、3 几何变换的不变性
5、3、4 范例
5、3、5 实际应用
参考书与文献
1、4 统计模式识别
第六章 特征提取Ⅰ:几何特征和变换
6、1 概述
6、2 几何特征(环、交叉点、端点)
6、2、1 交叉点和端点
6、2、2 环
6、3 特征映射
6、4 基于几何特征的一个网络例子
6、5 利用变换进行特征提取
6、6 傅立叶描述符(FD)
6、7 Gabor变换和子波
1、5 按句法规则的模式识别
参考书与文献
第七章 特征提取Ⅱ:主分量分析
7、1 降维
7、2 主分量
7、2、1 PCA示例
7、3 KARHUNEN-LOEVE(K-L)变换
7、3、1 变换示例
7、4 主分量神经网络
7、5 应用
参考书与文献
1、6 字符识别问题
第八章 Kohonen网络和学习矢量量化
8、1 概述
8、2 K-均值算法
8、2、1 K-均值算法举例
8、3 Kohonen模型介绍
8、3、1 Kohonen网络示例
8、4 侧反馈规则
8、5 Kohonen自组织特征映射
8、5、1 SOFM举例
8、6 学习矢量量化
1、7 题目的组织
8、6、1 LVQ举例
8、7 LVQ的改进
8、7、1 LVQ2
8、7、2 LVQ2.1
8、7、3 LVQ3
8、7、4 LVQ的最后变形
参考书与文献
第九章 神经联想记忆和Hopfield网络
9、1 概述
9、2 线性联想记忆(LAM)
参考书与文献
9、2、1 一个自联想LAM例子
9、3 Hopfield网络
9、4 Hopfield网络的一个范例
9、5 讨论
9、6 位图范例
9、7 BAM网络
9、8 一个BAM网络范例
参考书与文献
第十章 自适应共振理论(ART)
10、1 概述
第二章 神经网络概述
10、2 寻求聚类结构
10、3 矢量量化
10、3、1 VQ举例1
10、3、2 VQ举例2
10、3、3 VQ举例3
10、4 ART基本原理
10、5 稳定性和可塑性两难问题
10、6 ART1:基本工作方式
10、7 ART1:算法
10、8 增益控制机制
2、1 生物神经网络概述
10、8、1 增益控制举例1
10、8、2 增益控制举例2
10、9 ART2模型
10、10 讨论
10、11 应用
参考书与文献
第十一章 神经认识机
11、1 引言
11、2 网络的结构
11、3 神经认识机的一个例子
2、2 背景
参考书与文献
第十二章 多分类器系统
12、1 综述
12、2 多种识别器组合成的系统结构
12、3 投票方案
12、4 混淆矩阵
12、5 可靠性
12、6 一些经验方法
参考书与文献
2、3 生物神经网络
2、4 大脑中的分层组织
2、5 历史背景
2、6 人工神经网络
参考书与文献
第三章 预处理
第一章 引言
3、1 概述
3、2 扫描图像的处理
3、3 图像压缩
3、3、1 图像压缩的例子
3、4 边缘检测
3、5 骨架处理
3、5、1 细化的例子
3、6 处理手写板输入
3、7 图像的分割
参考书与文献
1、1 模式识别系统
第四章 有监督学习的前馈网络
4、1 前馈多层感知器结构
4、2 用C++实现前馈多层感知器
4、3 利用B-P算法进行网络训练
4、3、1 用C++实现B-P算法
4、4 一个基本例子
4、5 训练策略和避免局部最小
4、6 梯度下降中的变量
4、6、1 块适应和数据适应梯度下降方法的比较
4、6、2 一阶和二阶梯度下降方法的比较
1、2 人工神经网络方法的产生
4、7 拓扑
4、8 ACON和OCON的比较
4、9 过训练和推广
4、10 训练集合和网络大小
4、11 共轭梯度方法
4、12 ALOPEX
参考书与文献
第五章 其它类型的神经网络
5、1 概述
5、2 径向基函数网络
1、3 模式识别序言
5、2、1 网络结构
5、2、2 RBF训练
5、2、3 RBF网络的应用
5、3 高阶神经网络
5、3、1 引言
5、3、2 结构
5、3、3 几何变换的不变性
5、3、4 范例
5、3、5 实际应用
参考书与文献
1、4 统计模式识别
第六章 特征提取Ⅰ:几何特征和变换
6、1 概述
6、2 几何特征(环、交叉点、端点)
6、2、1 交叉点和端点
6、2、2 环
6、3 特征映射
6、4 基于几何特征的一个网络例子
6、5 利用变换进行特征提取
6、6 傅立叶描述符(FD)
6、7 Gabor变换和子波
1、5 按句法规则的模式识别
参考书与文献
第七章 特征提取Ⅱ:主分量分析
7、1 降维
7、2 主分量
7、2、1 PCA示例
7、3 KARHUNEN-LOEVE(K-L)变换
7、3、1 变换示例
7、4 主分量神经网络
7、5 应用
参考书与文献
1、6 字符识别问题
第八章 Kohonen网络和学习矢量量化
8、1 概述
8、2 K-均值算法
8、2、1 K-均值算法举例
8、3 Kohonen模型介绍
8、3、1 Kohonen网络示例
8、4 侧反馈规则
8、5 Kohonen自组织特征映射
8、5、1 SOFM举例
8、6 学习矢量量化
1、7 题目的组织
8、6、1 LVQ举例
8、7 LVQ的改进
8、7、1 LVQ2
8、7、2 LVQ2.1
8、7、3 LVQ3
8、7、4 LVQ的最后变形
参考书与文献
第九章 神经联想记忆和Hopfield网络
9、1 概述
9、2 线性联想记忆(LAM)
Pattern recognition with neural networks in C++
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×
亲爱的云图用户,
光盘内的文件都可以直接点击浏览哦
无需下载,在线查阅资料!
