简介
本书介绍了数据分析的基本内容与方法,其特点是既重视数据分析的基本理论与方法的介绍,又强调应用计算机软件SAS进行实际分析和计算能力的培养。主要内容有:数据描述性分析、非参数方法、回归分析、主成分分析、判别分析、聚类分析、时间序列分析、Bayes统计分析以及常用数据分析方法的SAS过程简介。本书每章末附有大量实用、丰富的习题,并要求学生独立上机完成。
本书可作为高等院校信息科学及数理统计专业的本科生教材,也可供有关专业的研究生及工程技术人员参考。
目录
第1章 数据描述性分析
1.1 数据的数字特征
1.1.1 均值、方差等数字特性
1.1.2 中位数、分位数、三均值与极差
1.2 数据的分布
1.2.1 直方图、经验分布函数与qq图
1.2.2 茎叶图、箱线图及五数总括
1.2.3 正态性检验与分布拟合检验
1.3 多元数据的数字特征与相关分桥
1.3.1 二元数据的数字特征及相关系数
1.3.2 多元数据的数字符征及相关短阵
1.3.3 总体的数字符征及相关矩阵
习题一
第2章 非参数方法
2.1 两种处理方法比较的秩检验
2.1.1 两种处理方法比较的随机化模型及秩的零分布
2.1.2 wilcoxon秩和检验
2,1.3 总体模型的wilcoxon秩和检验
2.1.4 smirnov检验
2.2 成对分组设计下两种处理方法的比较
. 2.2.1 符号检验
2.2.2 wilcoxon符号秩检验
2.2.3 分组设计下两处理方法比较的总体模型
2.3 多种处理方法比较的kruskal—wallis检验
2.3.1 多种处理方法比较中秩的定义及kruskal—wallis统计量
2.3.2 kruskal、wallis统计量的零分布
2.4 分组设计下多种处理方法的比较
2.4.1 分组设计下秩的定义及其零分布
2.4.2 friedman检验
2.4.3 改进的friedman检验
2.5 列联表的独立性检验
2.5.1 定性变量与列联表
2.5.2 二维r×s列联表的独立性检验
2.5.3 三维r×s×t列联表的独立性检验
习题二
第3章 回归分析
3.1 线性回归模型
3.1.1 线性回归模型及其矩阵表示
3.1.2 β及2的估计
3.1.3 有关的统计推断
3.2 残差分析
3.2.1 误差项的正态性检验
3.2.2 残差图分析
3.3 回归方程的选取与系统建模概述
3.3.1 穷举法
3.3.2 逐步回归法
3.3.3 系统建模过程概述
3.4 logistic回归模型
3.4.1 线性logistic回归模型
3.4.2 参数的最大似然估计与newton—raphson迭代解法
3.4.3 logistic模型的统计推断
习题三
第4章 主成分分析
4.1 引言
4.2 总体主成分
4.2.1 总体主成分的定义
4.2.2 总体主成分的求法
4.2.3 总体主成分的性质
4.2.4 标准化变量的主成分
4.3 样本主成分
习题四
第5章 判别分析
5.1 距离判别
5.1.1 判别分析的基本思想及意义
5.1.2 两个总体的距离判别
5.1.3 判别准则的评价
5.1.4 多个总体的距离判别
5.2 bayes判别
5.2.1 bayes判别的基本思想
5.2.2 两个总体的bayes判别
5.2.3 多个总体的bayes判别
5.3 逐步判别
5.3.1 判别效果的检验
5.3.2 逐步判别的步骤
习题五
第6章 聚类分析
6.1 距离与相似系数
6.1.1 聚类分桥的基本思想及意义
6.1.2 样品间的相似性度量——臣离
6.1.3 变量间的相似性度量——相似系数
6.2 谱系聚类法
6.2.1 类间距离
6.2.2 类间距离的递推公式
6.2.3 谱系聚类法的步骤
6.2.4 谱系聚类法的统计量
6.2.5 变量聚类
6.3 快速聚类法
6.3.1 快速聚类法的步骤
6.3.2 用lm距离进行快速聚类
习题六
第7章 时间序列分析
7.1 平稳时间序列
7.1.1 时间序列分析及其意义
7.1.2 随机过程概念及其数字特征
7.1.3 平稳时间序列与平稳随机过程
7.1.4 乎稳性检验及自协方差函数、自相关函数的估计
7.2 arma时间序列及其特性
7.2.1 arma时间序列的定义
7.2.2 arma序列的平稳性与可逆性
7.2.3 arma序列的相关特性
7.3 arma时间序列的建模与预报
7.3.1 arma序列参数的矩估计
7.3.2 arma序列参数的精估计
7.3.3 arma模型的定阶与考核
7.3.4 平稳线性最小均方预报
7.3.5 arma序列的预报
7.4 arima序列与季节性序列
7.4.1 arima序列及其预报
7.4.2 季节性序列及其预报
习题七
第8章 bayes统计分析
8.1 bayes统计模型
8.1.1 bayes统计分析的基本思想及意义
8.1.2 bayes统计模型
8.1.3 bayes统计推断原则
8.1.4 先验分布的bayes假设与不变先验分布
8.1.5 共轭先验分布
8.1.6 先验分布中超参数的确定
8.1.7 后验分布的计算
8.2 bayes统计推断
8.2.1 bayes参数点估计
8.2.2 bayes区间估计
8.2.3 bayes假设检验’
习题八
第9章 常用数据分析方法的sas过程简介
9.1 sas系统简介
9.1.1 数据的输入与输出
9.1.2 利用已有的sas数据集建立新的sas数据集
9.1.3 sas系统的数学运算符号及常用的sas函数
9.1.4 逻辑语句与循环语句
9.2 常用数据分析方法的sas过程
9.2.1 几种描述性统计分析的sas过程
9.2.2 非参数方法的sas过程
9.2.3 回归分桥的sas过程
9.2.4 主成分分析的sas过程——proc princomp过程
9.2.5 判别分析的sas过程
9.2.6 聚类分析的sas过程
9.2.7 时间序列分析的sas过程——pocarima过程
9.2.8 sas系统的矩阵运算——prociml过程简介
9.2.9 bayes统计分析计算实例
常用统计数值表
主要参考文献
1.1 数据的数字特征
1.1.1 均值、方差等数字特性
1.1.2 中位数、分位数、三均值与极差
1.2 数据的分布
1.2.1 直方图、经验分布函数与qq图
1.2.2 茎叶图、箱线图及五数总括
1.2.3 正态性检验与分布拟合检验
1.3 多元数据的数字特征与相关分桥
1.3.1 二元数据的数字特征及相关系数
1.3.2 多元数据的数字符征及相关短阵
1.3.3 总体的数字符征及相关矩阵
习题一
第2章 非参数方法
2.1 两种处理方法比较的秩检验
2.1.1 两种处理方法比较的随机化模型及秩的零分布
2.1.2 wilcoxon秩和检验
2,1.3 总体模型的wilcoxon秩和检验
2.1.4 smirnov检验
2.2 成对分组设计下两种处理方法的比较
. 2.2.1 符号检验
2.2.2 wilcoxon符号秩检验
2.2.3 分组设计下两处理方法比较的总体模型
2.3 多种处理方法比较的kruskal—wallis检验
2.3.1 多种处理方法比较中秩的定义及kruskal—wallis统计量
2.3.2 kruskal、wallis统计量的零分布
2.4 分组设计下多种处理方法的比较
2.4.1 分组设计下秩的定义及其零分布
2.4.2 friedman检验
2.4.3 改进的friedman检验
2.5 列联表的独立性检验
2.5.1 定性变量与列联表
2.5.2 二维r×s列联表的独立性检验
2.5.3 三维r×s×t列联表的独立性检验
习题二
第3章 回归分析
3.1 线性回归模型
3.1.1 线性回归模型及其矩阵表示
3.1.2 β及2的估计
3.1.3 有关的统计推断
3.2 残差分析
3.2.1 误差项的正态性检验
3.2.2 残差图分析
3.3 回归方程的选取与系统建模概述
3.3.1 穷举法
3.3.2 逐步回归法
3.3.3 系统建模过程概述
3.4 logistic回归模型
3.4.1 线性logistic回归模型
3.4.2 参数的最大似然估计与newton—raphson迭代解法
3.4.3 logistic模型的统计推断
习题三
第4章 主成分分析
4.1 引言
4.2 总体主成分
4.2.1 总体主成分的定义
4.2.2 总体主成分的求法
4.2.3 总体主成分的性质
4.2.4 标准化变量的主成分
4.3 样本主成分
习题四
第5章 判别分析
5.1 距离判别
5.1.1 判别分析的基本思想及意义
5.1.2 两个总体的距离判别
5.1.3 判别准则的评价
5.1.4 多个总体的距离判别
5.2 bayes判别
5.2.1 bayes判别的基本思想
5.2.2 两个总体的bayes判别
5.2.3 多个总体的bayes判别
5.3 逐步判别
5.3.1 判别效果的检验
5.3.2 逐步判别的步骤
习题五
第6章 聚类分析
6.1 距离与相似系数
6.1.1 聚类分桥的基本思想及意义
6.1.2 样品间的相似性度量——臣离
6.1.3 变量间的相似性度量——相似系数
6.2 谱系聚类法
6.2.1 类间距离
6.2.2 类间距离的递推公式
6.2.3 谱系聚类法的步骤
6.2.4 谱系聚类法的统计量
6.2.5 变量聚类
6.3 快速聚类法
6.3.1 快速聚类法的步骤
6.3.2 用lm距离进行快速聚类
习题六
第7章 时间序列分析
7.1 平稳时间序列
7.1.1 时间序列分析及其意义
7.1.2 随机过程概念及其数字特征
7.1.3 平稳时间序列与平稳随机过程
7.1.4 乎稳性检验及自协方差函数、自相关函数的估计
7.2 arma时间序列及其特性
7.2.1 arma时间序列的定义
7.2.2 arma序列的平稳性与可逆性
7.2.3 arma序列的相关特性
7.3 arma时间序列的建模与预报
7.3.1 arma序列参数的矩估计
7.3.2 arma序列参数的精估计
7.3.3 arma模型的定阶与考核
7.3.4 平稳线性最小均方预报
7.3.5 arma序列的预报
7.4 arima序列与季节性序列
7.4.1 arima序列及其预报
7.4.2 季节性序列及其预报
习题七
第8章 bayes统计分析
8.1 bayes统计模型
8.1.1 bayes统计分析的基本思想及意义
8.1.2 bayes统计模型
8.1.3 bayes统计推断原则
8.1.4 先验分布的bayes假设与不变先验分布
8.1.5 共轭先验分布
8.1.6 先验分布中超参数的确定
8.1.7 后验分布的计算
8.2 bayes统计推断
8.2.1 bayes参数点估计
8.2.2 bayes区间估计
8.2.3 bayes假设检验’
习题八
第9章 常用数据分析方法的sas过程简介
9.1 sas系统简介
9.1.1 数据的输入与输出
9.1.2 利用已有的sas数据集建立新的sas数据集
9.1.3 sas系统的数学运算符号及常用的sas函数
9.1.4 逻辑语句与循环语句
9.2 常用数据分析方法的sas过程
9.2.1 几种描述性统计分析的sas过程
9.2.2 非参数方法的sas过程
9.2.3 回归分桥的sas过程
9.2.4 主成分分析的sas过程——proc princomp过程
9.2.5 判别分析的sas过程
9.2.6 聚类分析的sas过程
9.2.7 时间序列分析的sas过程——pocarima过程
9.2.8 sas系统的矩阵运算——prociml过程简介
9.2.9 bayes统计分析计算实例
常用统计数值表
主要参考文献
数据分析
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×