微信扫一扫,移动浏览光盘
简介
目录
译者序
前言
记号
第0章预备知识
01函数与集合
02纯量
03矩阵
04线性方程组
05行列式
06数学归纳法
07多项式
08多项式与矩阵
09问题
010一些重要的概念
第1章向量空间
11什么是向量空间
12向量空间的例子
13子空间
14线性组合与生成空间
15子空间的交、和以及直和
16线性相关与线性无关
17问题
18注记
19一些重要的概念
第2章基与相似性
21什么是基
22维数
23基表示与线性变换
24 基变换与相似性
25维数定理
26问题
27一些重要的概念
第3章分块矩阵
31行与列的分划
32秩
33分块分划与直和
34分块矩阵的行列式
35换位子与Shoda定理
36Kronecker乘积
37问题
38注记
39一些重要的概念
第4章内积空间
41毕达哥拉斯定理
42余弦法则
43平面中的角与长度
44内积
45内积导出的范数
46赋范向量空间
47问题
48注记
49一些重要的概念
第5章标准正交向量
51标准正交组
52标准正交基
53GramSchmidt方法
54Riesz表示定理
55基表示
56线性变换与矩阵的伴随
57Parseval等式与Bessel不等式
58Fourier级数
59问题
510注记
511一些重要的概念
第6章酉矩阵
61内积空间中的等距
62酉矩阵
63置换矩阵
64Householder矩阵与秩1射影
65QR分解
66上Hessenberg矩阵
67问题
68注记
69一些重要的概念
第7章正交补与正交射影
71正交补
72相容线性方程组的极小范数解
73正交射影
74逼近
75不相容线性方程组的小平方解
76不变子空间
77问题
78注记
79一些重要的概念
第8章特征值、特征向量与几何重数
81特征值特征向量对
82每个方阵有一个特征值
83有多少个特征值
84特征值在何处
85特征向量与交换矩阵
86实矩阵的实相似
87问题
88注记
89一些重要的概念
第9章特征多项式与代数重数
91特征多项式
92代数重数
93相似与特征值重数
94对角化与特征值重数
95可对角化矩阵的函数计算
96换位集
97AB与BA的特征值
98问题
99注记
910一些重要的概念
第10章酉三角化与分块对角化
101Schur三角化定理
102CayleyHamilton定理
103极小多项式
104线性矩阵方程与分块对角化
105交换矩阵与三角化
106特征值调节与Google矩阵
107问题
108注记
109一些重要的概念
第11章Jordan标准型
111Jordan块与Jordan矩阵
112Jordan型的存在性
113Jordan型的性
114Jordan标准型
115微分方程与Jordan标准型
116收敛的矩阵
117幂有界矩阵与Markov矩阵
118矩阵与其转置阵的相似性
119AB与BA的可逆Jordan块
1110矩阵与其复共轭矩阵的相似性
1111问题
1112注记
1113一些重要的概念
第12章正规矩阵与谱定理
121正规矩阵
122谱定理
123偏离正规性的亏量
124FugledePutnam定理
125循环矩阵
126一些特殊的正规矩阵类
127正规矩阵与其他可对角化矩阵的相似性
128正规性的某些特征
129谱分解
1210问题
1211注记
1212一些重要的概念
第13章半正定矩阵
131半正定矩阵
132半正定矩阵的平方根
133Cholesky分解
134二次型的同时对角化
135Schur乘积定理
136问题
137注记
138一些重要的概念
第14章奇异值分解与极分解
141奇异值分解
142紧致奇异值分解
143极分解
144问题
145注记
146一些重要的概念
第15章奇异值与谱范数
151奇异值与逼近
152谱范数
153奇异值与特征值
154谱范数的上界
155伪逆阵
156谱条件数
157复对称阵
158幂等阵
159问题
1510注记
1511一些重要的概念
第16章交错与惯性
161Rayleigh商
162Hermite阵之和的特征值交错
163加边Hermite阵的特征值交错
164Sylvester判别法
165Hermite阵的对角元素与特征值
166Hermite阵的相合与惯性
167Weyl不等式
168正规矩阵的相合与惯性
169问题
1610注记
1611一些重要的概念
附录A复数
参考文献
索引
前言
记号
第0章预备知识
01函数与集合
02纯量
03矩阵
04线性方程组
05行列式
06数学归纳法
07多项式
08多项式与矩阵
09问题
010一些重要的概念
第1章向量空间
11什么是向量空间
12向量空间的例子
13子空间
14线性组合与生成空间
15子空间的交、和以及直和
16线性相关与线性无关
17问题
18注记
19一些重要的概念
第2章基与相似性
21什么是基
22维数
23基表示与线性变换
24 基变换与相似性
25维数定理
26问题
27一些重要的概念
第3章分块矩阵
31行与列的分划
32秩
33分块分划与直和
34分块矩阵的行列式
35换位子与Shoda定理
36Kronecker乘积
37问题
38注记
39一些重要的概念
第4章内积空间
41毕达哥拉斯定理
42余弦法则
43平面中的角与长度
44内积
45内积导出的范数
46赋范向量空间
47问题
48注记
49一些重要的概念
第5章标准正交向量
51标准正交组
52标准正交基
53GramSchmidt方法
54Riesz表示定理
55基表示
56线性变换与矩阵的伴随
57Parseval等式与Bessel不等式
58Fourier级数
59问题
510注记
511一些重要的概念
第6章酉矩阵
61内积空间中的等距
62酉矩阵
63置换矩阵
64Householder矩阵与秩1射影
65QR分解
66上Hessenberg矩阵
67问题
68注记
69一些重要的概念
第7章正交补与正交射影
71正交补
72相容线性方程组的极小范数解
73正交射影
74逼近
75不相容线性方程组的小平方解
76不变子空间
77问题
78注记
79一些重要的概念
第8章特征值、特征向量与几何重数
81特征值特征向量对
82每个方阵有一个特征值
83有多少个特征值
84特征值在何处
85特征向量与交换矩阵
86实矩阵的实相似
87问题
88注记
89一些重要的概念
第9章特征多项式与代数重数
91特征多项式
92代数重数
93相似与特征值重数
94对角化与特征值重数
95可对角化矩阵的函数计算
96换位集
97AB与BA的特征值
98问题
99注记
910一些重要的概念
第10章酉三角化与分块对角化
101Schur三角化定理
102CayleyHamilton定理
103极小多项式
104线性矩阵方程与分块对角化
105交换矩阵与三角化
106特征值调节与Google矩阵
107问题
108注记
109一些重要的概念
第11章Jordan标准型
111Jordan块与Jordan矩阵
112Jordan型的存在性
113Jordan型的性
114Jordan标准型
115微分方程与Jordan标准型
116收敛的矩阵
117幂有界矩阵与Markov矩阵
118矩阵与其转置阵的相似性
119AB与BA的可逆Jordan块
1110矩阵与其复共轭矩阵的相似性
1111问题
1112注记
1113一些重要的概念
第12章正规矩阵与谱定理
121正规矩阵
122谱定理
123偏离正规性的亏量
124FugledePutnam定理
125循环矩阵
126一些特殊的正规矩阵类
127正规矩阵与其他可对角化矩阵的相似性
128正规性的某些特征
129谱分解
1210问题
1211注记
1212一些重要的概念
第13章半正定矩阵
131半正定矩阵
132半正定矩阵的平方根
133Cholesky分解
134二次型的同时对角化
135Schur乘积定理
136问题
137注记
138一些重要的概念
第14章奇异值分解与极分解
141奇异值分解
142紧致奇异值分解
143极分解
144问题
145注记
146一些重要的概念
第15章奇异值与谱范数
151奇异值与逼近
152谱范数
153奇异值与特征值
154谱范数的上界
155伪逆阵
156谱条件数
157复对称阵
158幂等阵
159问题
1510注记
1511一些重要的概念
第16章交错与惯性
161Rayleigh商
162Hermite阵之和的特征值交错
163加边Hermite阵的特征值交错
164Sylvester判别法
165Hermite阵的对角元素与特征值
166Hermite阵的相合与惯性
167Weyl不等式
168正规矩阵的相合与惯性
169问题
1610注记
1611一些重要的概念
附录A复数
参考文献
索引
线性代数高级教程:矩阵理论及应用
光盘服务联系方式: 020-38250260 客服QQ:4006604884