
Solving applied mathematical problems with MATLAB /
副标题:无
作 者:Dingyü Xue, YangQuan Chen.
分类号:
ISBN:9781420082500
微信扫一扫,移动浏览光盘
简介
Summary:
Publisher Summary 1
This book/CD-ROM text offers undergraduate and graduate students access to the capabilities of MATLAB so that they will have more opportunity to focus on 'computational thinking' rather than 'computational doing.' After an overview of computer mathematics languages and fundaments of MATLAB programming, chapters cover specific types of problems, such as calculus problems, integral transforms, nonlinear equations and numerical optimization problems, differential equation problems, probability and mathematical statistics problems, and nontraditional solution methods. Each chapter provides MATLAB example scripts and reproducible MATLAB-generated plots. In addition to the standard MATLAB, some of MATLAB's commercial toolboxes may be needed to solve chapter exercises. MATLAB functions designed by the authors, plus some third-party free toolboxes, are also presented in the book. The CD-ROM contains interactive PowerPoint and MATLAB/Simulink files. Xue is affiliated with Northeastern University, China. Chen is affiliated with Utah State University. Annotation 漏2009 Book News, Inc., Portland, OR (booknews.com)
目录
Contents
1 Computer Mathematics Languages ¿ An Overview 1
1.1 Computer Solutions to Mathematics Problems . . . . . . . . 1
1.1.1 Why should we study computer mathematics language? 1
1.1.2 Analytical solutions versus numerical solutions . . . . . 4
1.1.3 Mathematics software packages: an overview . . . . . . 5
1.2 Summary of Computer Mathematics Languages . . . . . . . . 6
1.2.1 A brief historic review of MATLAB . . . . . . . . . . . 6
1.2.2 Three widely used computer mathematics languages . 7
1.2.3 Introduction to Free Scientific Open-source Softwares . 7
1.3 Outline of the Book . . . . . . . . . . . . . . . . . . . . . . . 8
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Fundamentals of MATLAB Programming 11
2.1 Fundamentals of MATLAB Programming . . . . . . . . . . . 12
2.1.1 Variables and constants in MATLAB . . . . . . . . . . 12
2.1.2 Data structure . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.3 Basic structure of MATLAB . . . . . . . . . . . . . . . 14
2.1.4 Colon expressions and sub-matrices extraction . . . . . 15
2.2 Fundamental Mathematical Calculations . . . . . . . . . . . . 16
2.2.1 Algebraic operations of matrices . . . . . . . . . . . . . 16
2.2.2 Logic operations of matrices . . . . . . . . . . . . . . . 18
2.2.3 Relationship operations of matrices . . . . . . . . . . . 19
2.2.4 Simplifications and presentations of analytical results . 19
2.2.5 Basic number theory computations . . . . . . . . . . . 21
2.3 Flow Control Structures of MATLAB Language . . . . . . . 22
2.3.1 Loop control structures . . . . . . . . . . . . . . . . . . 22
2.3.2 Conditional control structures . . . . . . . . . . . . . . 24
2.3.3 Switch structure . . . . . . . . . . . . . . . . . . . . . . 25
2.3.4 Trial structure . . . . . . . . . . . . . . . . . . . . . . . 26
2.4 Writing and Debugging MATLAB Functions . . . . . . . . . 27
2.4.1 Basic structure of MATLAB functions . . . . . . . . . 27
2.4.2 Programming of functions with variable inputs/outputs 30
2.4.3 Inline functions and anonymous functions . . . . . . . 31
2.5 Two-dimensional Graphics . . . . . . . . . . . . . . . . . . . 31
2.5.1 Basic statements of two-dimensional plotting . . . . . . 31
2.5.2 Other two-dimensional plotting statements . . . . . . . 34
2.5.3 Implicit function plotting and applications . . . . . . . 35
2.5.4 Graphics decorations . . . . . . . . . . . . . . . . . . . 37
2.6 Three-dimensional Graphics . . . . . . . . . . . . . . . . . . . 39
7
8 Solving Applied Mathematical Problems with MATLAB
2.6.1 Plotting of three-dimensional curves . . . . . . . . . . . 39
2.6.2 Plotting of three-dimensional surfaces . . . . . . . . . . 39
2.6.3 Viewpoint setting in 3D graphs . . . . . . . . . . . . . 42
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3 Calculus Problems 47
3.1 Analytical Solutions to Calculus Problems . . . . . . . . . . . 47
3.1.1 Analytical solutions to limit problems . . . . . . . . . . 48
3.1.2 Analytical solutions to derivative problems . . . . . . . 50
3.1.3 Analytical solutions to integral problems . . . . . . . . 55
3.2 Series Expansions and Series Evaluations . . . . . . . . . . . 59
3.2.1 Taylor series expansion . . . . . . . . . . . . . . . . . . 59
3.2.2 Fourier series expansion . . . . . . . . . . . . . . . . . 63
3.2.3 Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
3.2.4 Sequence product . . . . . . . . . . . . . . . . . . . . . 67
3.3 Numerical Differentiation . . . . . . . . . . . . . . . . . . . . 68
3.3.1 Numerical differentiation algorithms . . . . . . . . . . 68
3.3.2 Central-point difference algorithm with MATLAB im-
plementation . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.3 Gradient computations of functions with two variables 71
3.4 Numerical Integration Problems . . . . . . . . . . . . . . . . 72
3.4.1 Numerical integration from given data using trapezoidal
method . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
3.4.2 Numerical integration of single variable functions . . . 74
3.4.3 Numerical solutions to double integrals . . . . . . . . . 78
3.4.4 Numerical solutions to triple integrals . . . . . . . . . . 79
3.5 Path Integrals and Line Integrals . . . . . . . . . . . . . . . . 80
3.5.1 Path integrals . . . . . . . . . . . . . . . . . . . . . . . 80
3.5.2 Line integrals . . . . . . . . . . . . . . . . . . . . . . . 81
3.6 Surface Integrals . . . . . . . . . . . . . . . . . . . . . . . . . 83
3.6.1 Scalar surface integrals . . . . . . . . . . . . . . . . . . 83
3.6.2 Vector surface integrals . . . . . . . . . . . . . . . . . . 84
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4 Linear Algebra Problems 89
4.1 Inputting Special Matrices . . . . . . . . . . . . . . . . . . . 90
4.1.1 Numerical matrix input . . . . . . . . . . . . . . . . . . 90
4.1.2 Defining symbolic matrices . . . . . . . . . . . . . . . . 94
4.2 Fundamental Matrix Operations . . . . . . . . . . . . . . . . 95
4.2.1 Basic concepts and properties of matrices . . . . . . . . 95
4.2.2 Matrix inversion and generalized inverse of a matrix . 102
4.2.3 Matrix eigenvalue problems . . . . . . . . . . . . . . . 106
4.3 Fundamental Matrix Transformations . . . . . . . . . . . . . 109
4.3.1 Similarity transformations and orthogonal matrices . . 109
4.3.2 Triangular and Cholesky decompositions . . . . . . . . 111
4.3.3 Jordan transformations . . . . . . . . . . . . . . . . . . 114
4.3.4 Singular value decompositions . . . . . . . . . . . . . . 116
4.4 Solving Matrix Equations . . . . . . . . . . . . . . . . . . . . 118
Contents 9
4.4.1 Solutions to linear algebraic equations . . . . . . . . . 118
4.4.2 Solutions to Lyapunov equations . . . . . . . . . . . . 121
4.4.3 Solutions to Sylvester equations . . . . . . . . . . . . . 124
4.4.4 Solutions to Riccati equations . . . . . . . . . . . . . . 125
4.5 Nonlinear Functions and Matrix Function Evaluations . . . . 126
4.5.1 Element-by-element computations . . . . . . . . . . . . 126
4.5.2 Matrix function evaluations . . . . . . . . . . . . . . . 127
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5 Integral Transforms and Complex Variable Functions 137
5.1 Laplace Transforms and Their Inverses . . . . . . . . . . . . . 137
5.1.1 Definitions and properties . . . . . . . . . . . . . . . . 138
5.1.2 Computer solution to Laplace transform problems . . . 139
5.2 Fourier Transforms and Their Inverses . . . . . . . . . . . . . 142
5.2.1 Definitions and properties . . . . . . . . . . . . . . . . 142
5.2.2 Solving Fourier transform problems . . . . . . . . . . . 142
5.2.3 Fourier sine and cosine transforms . . . . . . . . . . . . 144
5.2.4 Discrete Fourier sine, cosine transforms . . . . . . . . . 147
5.3 Other Integral Transforms . . . . . . . . . . . . . . . . . . . . 147
5.3.1 Mellin transform . . . . . . . . . . . . . . . . . . . . . 148
5.3.2 Hankel transform solutions . . . . . . . . . . . . . . . . 149
5.4 Z Transforms and Their Inverses . . . . . . . . . . . . . . . . 150
5.4.1 Definitions and properties of Z transforms and inverses 150
5.4.2 Computations of Z transform . . . . . . . . . . . . . . 151
5.5 Solving Complex Variable Function Problems . . . . . . . . . 152
5.5.1 Complex Variable Functions and Mapping Visualization 152
5.5.2 Concept and computation of residues . . . . . . . . . . 152
5.5.3 Partial fraction expansion for rational functions . . . . 155
5.5.4 Inverse Laplace transform using partial fraction expan-
sions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.5.5 Computing closed-path integrals . . . . . . . . . . . . . 160
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162
6 Nonlinear Equations and Numerical Optimization Problems 165
6.1 Nonlinear Algebraic Equations . . . . . . . . . . . . . . . . . 166
6.1.1 Graphical method for solving nonlinear equations . . . 166
6.1.2 Quasi-analytical solutions to polynomial-type equations 168
6.1.3 Numerical solutions to general nonlinear equations . . 172
6.1.4 Nonlinear matrix equations . . . . . . . . . . . . . . . 174
6.2 Unconstrained Optimization Problems . . . . . . . . . . . . . 176
6.2.1 Analytical solutions and graphical solution methods . . 176
6.2.2 Numerical solution of unconstrained optimization using
MATLAB . . . . . . . . . . . . . . . . . . . . . . . . . 178
6.2.3 Global minimum and local minima . . . . . . . . . . . 179
6.2.4 Solving optimization problems using gradient informa-
tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.2.5 Optimization problems with bounded constraints . . . 182
6.3 Constrained Optimization Problems . . . . . . . . . . . . . . 183
10 Solving Applied Mathematical Problems with MATLAB
6.3.1 Constraints and feasibility regions . . . . . . . . . . . . 183
6.3.2 Solving linear programming problems . . . . . . . . . . 185
6.3.3 Solving quadratic programming problems . . . . . . . . 187
6.3.4 Solving general nonlinear programming problems . . . 188
6.4 Mixed Integer Programming Problems . . . . . . . . . . . . . 190
6.4.1 Solving mixed integer programming problems . . . . . 191
6.4.2 Solving binary programming problems . . . . . . . . . 194
6.5 Linear Matrix Inequalities . . . . . . . . . . . . . . . . . . . . 195
6.5.1 A general introduction to LMIs . . . . . . . . . . . . . 196
6.5.2 Lyapunov inequalities . . . . . . . . . . . . . . . . . . . 196
6.5.3 Classification of LMI problems . . . . . . . . . . . . . . 198
6.5.4 LMI problem solutions with MATLAB . . . . . . . . . 199
6.5.5 Optimization of LMI problems by YALMIP Toolbox . 201
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
7 Differential Equation Problems 207
7.1 Analytical Solution Methods for Special Classes of ODEs . . 208
7.1.1 Mathematical descriptions . . . . . . . . . . . . . . . . 208
7.1.2 Analytical solution methods . . . . . . . . . . . . . . . 210
7.1.3 Applications of Laplace transforms . . . . . . . . . . . 212
7.1.4 Analytical solutions to LTI state-space equations . . . 214
7.1.5 Analytical solutions to special nonlinear differential equa-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
7.2 Numerical Solutions to ODEs . . . . . . . . . . . . . . . . . . 215
7.2.1 Overview of numerical solution algorithms . . . . . . . 216
7.2.2 Fixed-step Runge-Kutta algorithm and itsMATLAB im-
plementation . . . . . . . . . . . . . . . . . . . . . . . . 218
7.2.3 Numerical solution to first-order vector ODEs . . . . . 219
7.2.4 Transforms to standard ODEs . . . . . . . . . . . . . . 224
7.2.5 Validation of numerical solutions to ODEs . . . . . . . 231
7.3 Numerical Solutions to Special Ordinary Differential Equations 232
7.3.1 Solutions of stiff ODEs . . . . . . . . . . . . . . . . . . 232
7.3.2 Solutions of implicit differential equations . . . . . . . 235
7.3.3 Solutions to differential algebraic equations . . . . . . 239
7.3.4 Solutions to delay differential equations . . . . . . . . 241
7.4 Solving Boundary Value Problems . . . . . . . . . . . . . . . 243
7.4.1 Solutions to two-point boundary value problems . . . . 243
7.4.2 Solutions to general boundary value problems . . . . . 245
7.5 Introduction to Partial Differential Equations . . . . . . . . . 247
7.5.1 Solving a set of 1D PDEs . . . . . . . . . . . . . . . . . 248
7.5.2 Mathematical description to 2D PDEs . . . . . . . . . 249
7.5.3 The GUI for the PDE Toolbox ¿ an introduction . . . 251
7.6 Solving ODEs with Block Diagrams in Simulink . . . . . . . 258
7.6.1 A brief introduction to Simulink . . . . . . . . . . . . . 258
7.6.2 Simulink ¿ relevant blocks . . . . . . . . . . . . . . . 258
7.6.3 Using Simulink for modeling and simulation of ODEs . 260
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Contents 11
8 Interpolation and Approximation Problems 269
8.1 Interpolation and Data Fitting . . . . . . . . . . . . . . . . . 270
8.1.1 One-dimensional data interpolation . . . . . . . . . . . 270
8.1.2 Definite integral evaluation from given samples . . . . 272
8.1.3 Two-dimensional grid data interpolation . . . . . . . . 274
8.1.4 Two-dimensional scattered data interpolation . . . . . 277
8.1.5 High-dimensional data interpolations . . . . . . . . . . 280
8.2 Spline Interpolation and Numerical Calculus . . . . . . . . . 281
8.2.1 Spline interpolation in MATLAB . . . . . . . . . . . . 281
8.2.2 Numerical differentiation and integration with splines 284
8.3 Data Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 287
8.3.1 Polynomial fitting . . . . . . . . . . . . . . . . . . . . . 287
8.3.2 Approximation by continued fraction expansions . . . . 290
8.3.3 Pad´e rational approximations . . . . . . . . . . . . . . 292
8.3.4 Curve fitting by linear combination of basis functions . 294
8.3.5 Least square curve fitting . . . . . . . . . . . . . . . . . 296
8.4 Signal Analysis and Digital Signal Processing . . . . . . . . . 298
8.4.1 Correlation analysis . . . . . . . . . . . . . . . . . . . . 298
8.4.2 Fast Fourier transforms . . . . . . . . . . . . . . . . . . 300
8.4.3 Filtering techniques and filter design . . . . . . . . . . 302
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
9 Probability and Mathematical Statistics Problems 309
9.1 Probability Distributions and Pseudo-random Number Gener-
ators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
9.1.1 Introduction to PDFs and CDFs . . . . . . . . . . . . 309
9.1.2 PDFs/CDFs of commonly used distributions . . . . . 310
9.1.3 Solving probability problems . . . . . . . . . . . . . . . 317
9.1.4 Random numbers and pseudo-random numbers . . . . 318
9.2 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 319
9.2.1 Mean and variance of random variables . . . . . . . . . 319
9.2.2 Moments of random variables . . . . . . . . . . . . . . 321
9.2.3 Covariance analysis of multivariate random variables . 322
9.2.4 Joint PDFs and CDFs of multivariate normal distribu-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
9.2.5 Monte Carlo solutions to mathematical problems . . . 324
9.3 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 326
9.3.1 Parametric estimation and interval estimation . . . . . 326
9.3.2 Multivariable linear regression and interval estimation 328
9.3.3 Nonlinear least square parametric and interval estima-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
9.4 Statistic Hypothesis Tests . . . . . . . . . . . . . . . . . . . . 333
9.4.1 Basic concept and procedures for statistic hypothesis
test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
9.4.2 Solving hypothesis test problems in MATLAB . . . . . 334
9.5 Analysis of Variance and Its Computation . . . . . . . . . . . 337
9.5.1 One-way ANOVA . . . . . . . . . . . . . . . . . . . . . 337
9.5.2 Two-way ANOVA . . . . . . . . . . . . . . . . . . . . . 339
9.5.3 n-way ANOVA . . . . . . . . . . . . . . . . . . . . . . 341
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
10 Non-traditional Solution Methods 345
10.1 Fuzzy Logic and Fuzzy Inference . . . . . . . . . . . . . . . . 346
10.1.1 Classical set theory and fuzzy sets . . . . . . . . . . . . 346
10.1.2 Membership function and fuzzification . . . . . . . . . 349
10.1.3 An interactive membership function editor . . . . . . . 351
10.1.4 Building fuzzy inference systems . . . . . . . . . . . . . 351
10.1.5 Fuzzy rules and fuzzy inference . . . . . . . . . . . . . 353
10.2 Neural Network and Its Applications in Data Fitting Problems 356
10.2.1 Fundamentals of neural networks . . . . . . . . . . . . 357
10.2.2 Graphical user interface for neural networks . . . . . . 364
10.3 Evolution Algorithms and Their Applications in Optimization
Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 366
10.3.1 Basic idea of genetic algorithms . . . . . . . . . . . . . 366
10.3.2 MATLAB solutions to optimization problems with ge-
netic algorithms . . . . . . . . . . . . . . . . . . . . . . 368
10.3.3 Particle swam optimizations . . . . . . . . . . . . . . . 373
10.3.4 Solving optimization problems with GADS Toolbox . . 374
10.3.5 Towards accurate global minimum solutions . . . . . . 377
10.4 Wavelet Transform and Its Applications in Data Processing . 378
10.4.1 Wavelet transform and waveforms of wavelet bases . . 378
10.4.2 Wavelet transform in signal processing problems . . . . 383
10.4.3 Graphical user interface in wavelets . . . . . . . . . . . 386
10.5 Rough Set Theory and Its Applications . . . . . . . . . . . . 388
10.5.1 Introduction to rough set theory . . . . . . . . . . . . . 388
10.5.2 Data processing problem solutions using rough sets . . 391
10.6 Fractional-order Calculus . . . . . . . . . . . . . . . . . . . . 395
10.6.1 Definitions of fractional-order calculus . . . . . . . . . 395
10.6.2 Evaluating fractional-order differentiation . . . . . . . 400
10.6.3 Solving fractional-order differential equations . . . . . 405
Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 412
References and Bibliography 415
MATLAB Functions Index 419
Index 425
Solving applied mathematical problems with MATLAB /
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×
亲爱的云图用户,
光盘内的文件都可以直接点击浏览哦
无需下载,在线查阅资料!
