Information fusion theory with applications

副标题:无

作   者:何友,王国宏,关欣等著

分类号:G202

ISBN:9787121103230

微信扫一扫,移动浏览光盘

简介

  本书是关于信息融合理论及应用的一部专著,是著者对该领域20多年来研究成果系统的、全面的总结。全书由19章组成,韦要内容有:信息融合概述、信息融合中的数学基础、信源分类与特性、信息融合系统功能和结构模型、分布式检测融合、目标跟踪融合、统计航迹关联算法、模糊与灰色航迹关联算法、状态估计融合、图像融合、目标识别融合、态势估计、威胁估计、知识融合、信息融合中的传感器管理、信息融合中的数据库技术、信息融合中的性能讦占,以及信息融合在民事和军事中的应用。最后是本书的回顾、建议与展望。本书可供从事信息工程,C4ISR系统、信息融合、模式识别、人工智能、信息处理、电子对抗、军事指挥等专业的科技人员阅读和参考。也可作为上述专业的研究生教材:同时还可供从事雷达、红外、声呐、激光、机器人、组合导航、智能交通、医学、金融、安保、互联网、遥感、遥测、无线传感器网络等领域的科技工作者学习参考。   

目录

第1章 信息融合概述 (1)

1.1 信息融合的定义 (1)

1.2 信息融合的原理与级别 (2)

1.3 信息融合的效益 (7)

1.4 信息融合的应用 (8)

1.5 信息融合研究的历史与现状 (13)

1.6 本书的范围和概貌 (16)

1.7 背景资料 (18)

第2章 信息融合中的数学基础 (19)

2.1 引言 (19)

2.2 统计数学理论基础 (19)

2.3 模糊数学理论基础 (44)

2.4 灰色系统理论基础 (49)

2.5 粗糙集理论基础 (52)

2.6 不确定性推理方法 (55)

2.7 小结 (68)

第3章 信源分类与特性 (69)

3.1 引言 (69)

3.2 信源分类 (69)

3.3 雷达及其特性 (70)

.3.4 双/多基地雷达及其特性 (74)

3.5 合成孔径雷达(sar)及其特性 (77)

3.6 逆合成孔径雷达(isar)及其特性 (78)

3.7 红外传感器及其特性 (80)

3.8 电子支援措施(esm)及其特性 (83)

3.9 激光传感器及其特性 (86)

3.10 声呐及其特性 (87)

3.11 电子情报(elint)及其特性 (88)

3.12 gps及其特性 (89)

3.13 小结 (90)

第4章 信息融合系统功能和结构模型 (91)

4.1 引言 (91)

4.2 信息融合系统的功能模型 (91)

4.3 信息融合系统的结构模型 (95)

4.4 小结 (102)

第5章 分布式检测融合 (104)

5.1 引言 (104)

5.2 并行结构中的分布式检测融合 (104)

5.3 串行结构中的分布检测与融合 (116)

5.4 反馈并联网络中的分布检测与融合 (121)

5.5 基于恒虚警率(cfar)约束的分布检测 (126)

5.6 小结 (133)

第6章 目标跟踪融合 (135)

6.1 引言 (135)

6.2 集中式多传感器联合概率数据互联算法 (135)

6.3 扩展的集中式多传感器联合概率数据互联算法 (145)

6.4 基于多假设的多传感器多目标跟踪融合算法 (150)

6.5 基于广义s-维分配的多传感器多目标跟踪融合算法 (160)

6.6 各种多传感器多目标跟踪融合算法仿真分析 (168)

6.7 小结 (177)

第7章 分布式信息融合中的统计航迹关联 (178)

7.1 引言 (178)

7.2 加权和修正航迹关联算法 (179)

7.3 序贯航迹关联算法 (180)

7.4 统计双门限航迹关联算法 (189)

7.5 最近邻域和k近邻域航迹关联算法 (194)

7.6 修正的k近邻域航迹关联算法 (195)

7.7 多局部节点情况下的统计航迹关联算法 (202)

7.8 不等样本容量下基于统计理论的航迹关联算法 (220)

7.9 统计航迹关联算法性能分析 (223)

7.10 在空中交通管制中的应用 (232)

7.11 比较与结论 (235)

第8章 分布式信息融合中的模糊与灰色航迹关联 (239)

8.1 引言 (239)

8.2 模糊因素集与隶属度函数 (239)

8.3 模糊因素的确定与模糊集的动态分配 (241)

8.4 模糊双门限航迹关联算法 (242)

8.5 基于模糊综合函数的航迹关联算法 (244)

8.6 多因素模糊综合决策航迹关联算法 (248)

8.7 灰色航迹关联算法 (251)

8.8 多局部节点情况下的模糊与灰色航迹关联 (252)

8.9 不等样本容量下基于模糊综合分析的航迹关联 (255)

8.10 不等样本容量下的灰色航迹关联 (257)

8.11 模糊与灰色航迹关联算法的性能分析 (260)

8.12 小结 (265)

第9章 状态估计融合 (267)

9.1 引言 (267)

9.2 系统方程描述 (268)

9.3 集中式状态估计融合 (270)

9.4 分布式状态估计融合 (275)

9.5 混合式状态估计融合 (282)

9.6 多级式状态估计融合 (285)

9.7 带反馈信息的分布估计融合 (290)

9.8 带反馈信息的多层估计融合 (297)

9.9 异步状态估计融合 (300)

9.10 小结 (307)

第10章 图像融合 (309)

10.1 引言 (309)

10.2 图像融合基础理论 (310)

10.3 像素级图像融合 (314)

10.4 特征级图像融合 (321)

10.5 决策级图像融合 (329)

10.6 图像融合效果评价 (331)

10.7 小结 (335)

第11章 目标识别融合 (336)

11.1 引言 (336)

11.2 基于灰色系统理论的目标识别融合算法 (336)

11.3 基于模糊集合理论的目标识别融合算法 (340)

11.4 基于属性测度理论的目标识别融合算法 (350)

11.5 基于粗糙集理论的目标识别融合算法 (357)

11.6 基于d-s证据理论的目标识别融合算法 (360)

11.7 基于dsmt的目标识别融合算法 (364)

11.8 基于最大后验概率准则的目标识别融合算法 (368)

11.9 小结 (369)

第12章 态势估计 (370)

12.1 引言 (370)

12.2 基于群的态势表示方法 (371)

12.3 态势预测 (374)

12.4 态势关联 (379)

12.5 态势评估 (380)

12.6 应用实例 (389)

12.7 小结 (392)

第13章 威胁估计 (393)

13.1 引言 (393)

13.2 威胁估计的应用和分类 (393)

13.3 威胁估计中的知识库 (395)

13.4 基于层次分析法的威胁估计 (400)

13.5 基于多因子综合加权的威胁估计 (404)

13.6 基于模糊多属性决策的威胁估计 (411)

13.7 基于神经网络和遗传算法的威胁估计 (415)

13.8 小结 (418)

第14章 知识融合 (419)

14.1 引言 (419)

14.2 信息融合中的知识融合 (419)

14.3 知识融合的体系结构 (422)

14.4 不确定知识的数据挖掘方法 (424)

14.5 基于融合规则的知识融合算法 (438)

14.6 基于粗糙集理论的知识融合算法 (441)

14.7 小结 (443)

第15章 信息融合中的传感器管理 (444)

15.1 引言 (444)

15.2 传感器的微管理和宏管理 (445)

15.3 被动传感器对主动传感器的指示和引导 (448)

15.4 多传感器系统中的雷达辐射控制 (449)

15.5 异类被动传感器的协同工作 (452)

15.6 多传感器被动定位系统中的交会角优化控制 (454)

15.7 基于crlb的传感器位置优化配置 (457)

15.8 基于最大期望效用的传感器管理 (460)

15.9 基于市场架构的多传感器管理(masm) (463)

15.10 小结 (464)

第16章 信息融合中的数据库技术 (465)

16.1 引言 (465)

16.2 数据库模型 (466)

16.3 信息融合中的数据库要求 (469)

16.4 数据库设计 (473)

16.5 数据库应用举例 (481)

16.6 小结 (484)

第17章 信息融合中的性能评估 (485)

17.1 引言 (485)

17.2 信息融合性能评估指标体系 (485)

17.3 信息融合性能评估的方法 (490)

17.4 信息融合性能评估举例 (493)

17.5 小结 (503)

第18章 信息融合在民事和军事中的应用 (504)

18.1 引言 (504)

18.2 智能驾驶系统 (504)

18.3 网络中心战 (505)

18.4 反潜战 (507)

18.5 全源信息分析系统 (510)

18.6 瑞典战术情报处理信息融合演示验证系统 (514)

18.7 小结 (518)

第19章 回顾、建议与展望 (519)

19.1 引言 (519)

19.2 研究成果回顾 (519)

19.3 问题与建议 (523)

19.4 研究方向展望 (525)

英文缩写对照表 (530)

参考文献 (535)

contents

chapter 1 outline of information fusion (1)

1.1 definition of information fusion (1)

1.2 principle and levels of information fusion (2)

1.3 benefits of information fusion (7)

1.4 applications of information fusion (8)

1.5 history and current state of information fusion (13)

1.6 scope and outline of information fusion (16)

1.7 further background (18)

chapter 2 mathematic basics in information fusion (19)

2.1 introduction (19)

2.2 basics of statistic theory (19)

2.3 basics of fuzzy set theory (44)

2.4 basics of gray system theory (49)

2.5 basics of rough set theory (52)

2.6 methods of uncertainty reasoning (55)

2.7 summary (68)

chapter 3 classifications and characteristics of information sources (69)

3.1 introduction (69)

3.2 classifications of information sources (69)

3.3 radar and its characteristics (70)

3.4 bistatic and multistatic radar and their characteristics (74)

3.5 sar and its characteristics (77)

3.6 isar and its characteristics (78)

3.7 infrared sensor and its characteristics (80)

3.8 esm and its characteristics (83)

3.9 laser sensor and its characteristics (86)

3.10 sonar and its characteristics (87)

3.11 elint and its characteristics (88)

3.12 gps and its characteristics (89)

3.13 summary (90)

chapter 4 functional and architectural models of information fusion system (91)

4.1 introduction (91)

4.2 functional model of information fusion system (91)

4.3 architectural model of information fusion system (95)

4.4 summary (102)

chapter 5 distributed detection fusion (104)

5.1 introduction (104)

5.2 distributed detection fusion in parallel network (104)

5.3 distributed detection fusion in serial network (116)

5.4 distributed detection fusion in parallel network with feedback (121)

5.5 distributed detection with cfar constraint (126)

5.6 summary (133)

chapter 6 target tracking fusion (135)

6.1 introduction (135)

6.2 centralized multisensor jointed probabilistic data association algorithms (135)

6.3 extended centralized multisensor jointed probabilistic data association algorithms (145)

6.4 multisensor multitarget tracking fusion algorithms based on multiple hypothesis (150)

6.5 multisensor multitarget tracking fusion algorithms based on generalized s-d assignment
technique (160)

6.6 performance comparision of multisensor multitarget tracking fusion algorithms (168)

6.7 summary (177)

chapter 7 statistical track-track association algorithms for distributed data

fusion (178)

7.1 introduction (178)

7.2 weighted and modified track association algorithms (179)

7.3 sequential track association algorithms (180)

7.4 statistical binary track association algorithms (189)

7.5 nearest neighbor and k-nearest neighbor track association algorithms (194)

7.6 modified k-nearest neighbor track association algorithms (195)

7.7 statistical track association algorithms in an environment of multiple local nodes (202)

7.8 statistical track association algorithms for unequal sample size situation (220)

7.9 performance analysis of statistical track association algorithms (223)

7.10 applications in a space surveillance system (232)

7.11 comparison and conclusion (235)

chapter 8 fuzzy and gray track-track association algorithms for distributed data

fusion (239)

8.1 introduction (239)

8.2 fuzzy element sets and membership functions (239)

8.3 selection of fuzzy elements and dynamic assignment of fuzzy set (241)

8.4 fuzzy track association with dual thresholds (242)

8.5 track association based on fuzzy synthetic functions (244)

8.6 track association based on fuzzy synthetic decisions of multiple elements (248)

8.7 gray track association algorithms (251)

8.8 fuzzy and gray track association algorithms for multiple local nodes (252)

8.9 track association based on fuzzy synthetic analysis for unequal sample size situation (255)

8.10 gray track association for unequal sample size situation (257)

8.11 performance analysis of fuzzy and gray track association algorithms (260)

8.12 summary (265)

chapter 9 state estimate fusion (267)

9.1 introduction (267)

9.2 system equation formulation (268)

9.3 state estimate fusion in centralized multisensor systems (270)

9.4 state estimate fusion in distributed multisensor systems (275)

9.5 state estimate fusion in hybrid multisensor systems (282)

9.6 state estimate fusion in multilevel multisensor systems (285)

9.7 distributed estimate fusion with feedback (290)

9.8 hierarchical estimate fusion with feedback (297)

9.9 asynchronous state estimate fusion (300)

9.10 summary (307)

chapter 10 image fusion (309)

10.1 introduction (309)

10.2 image fusion concepts (310)

10.3 pixel level image fusion (314)

10.4 feature level image fusion (321)

10.5 decision level image fusion (329)

10.6 performance evaluation of image fusion (331)

10.7 summary (335)

chapter 11 target identification fusion (336)

11.1 introduction (336)

11.2 target identification fusion algorithms based on gray system theory (336)

11.3 target identification fusion algorithms based on fuzzy set theory (340)

11.4 target identification fusion algorithms based on attribute measure theory (350)

11.5 applications of rough set theory in target identification (357)

11.6 target identification fusion algorithms based on d-s evidential theory (360)

11.7 target identification fusion algorithms based on dezert-smarandache theory (364)

11.8 target identification fusion algorithms based on maximum a posteriori probability
criterion (368)

11.9 summary (369)

chapter 12 situation estimation (370)

12.1 introduction (370)

12.2 situation description based on group (371)

12.3 situation forecast (374)

12.4 situation association (379)

12.5 situation evaluation (380)

12.6 application examples (389)

12.7 summary (392)

chapter 13 threat assessment (393)

13.1 introduction (393)

13.2 application and classification of threat assessment (393)

13.3 knowledge base of threat assessment (395)

13.4 threat assessment based on analytic hierarchy process (400)

13.5 threat assessment based on fuzzy integrated evaluation with multiple elements (404)

13.6 threat assessment based on fuzzy multiattribute decision (411)

13.7 threat assessment based on neural network and genetic algorithm (415)

13.8 summary (418)

chapter 14 knowledge fusion (419)

14.1 introduction (419)

14.2 knowledge fusion in information fusion (419)

14.3 architecture of knowledge fusion (422)

14.4 data mining methods of uncertain knowledge (424)

14.5 knowledge fusion algorithms based on fusion rules (438)

14.6 knowledge fusion algorithms based on rough set theory (441)

14.7 summary (443)

chapter 15 sensor management in information fusion (444)

15.1 introduction (444)

15.2 micro-management and macro-management for sensors (445)

15.3 indication and cueing of passive sensor to active sensor (448)

15.4 radar radiation control in multisensor system (449)

15.5 cooperation of heterogeneous passive sensors (452)

15.6 optimum cut angle control in multisensor location system (454)

15.7 optimum sensor deployment based on crlb (457)

15.8 sensor management based on maximum expectation efficiency (460)

15.9 sensor management based on market architecture (463)

15.10 summary (464)

chapter 16 database techniques in information fusion (465)

16.1 introduction (465)

16.2 database model (466)

16.3 requirement of data base in information fusion (469)

16.4 database design (473)

16.5 examples of database design (481)

16.6 summary (484)

chapter 17 performance evaluation of information fusion (485)

17.1 introduction (485)

17.2 performance index for information fusion evaluation (485)

17.3 performance evaluation methods for information fusion (490)

17.4 performance evaluation examples of information fusion (493)

17.5 summary (503)

chapter 18 civil and military applications of information fusion (504)

18.1 introduction (504)

18.2 application in intelligent driving system (504)

18.3 application in network centric warfare (505)

18.4 application in antisubmarine warfare (507)

18.5 application in nasa (510)

18.6 swiden tactical intelligence processing information fusion demonstration system (514)

18.7 summary (518)

chapter 19 review, suggestion and prospect (519)

19.1 introduction (519)

19.2 review of research work (519)

19.3 suggestion for existing research (523)

19.4 prospect for further research work (525)

english abbreviation glossary (530)

references (535)


已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

Information fusion theory with applications
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon