微信扫一扫,移动浏览光盘
简介
利用植物叶片图像对植物分类和病害识别是目前较为有效的方式之一,也是未来数字化植物研究的发展趋势。这一方法对植物物种的智能化分类,有效预防农作物病害发生,提高农作物产量,有效控制农药对农产品和生态环境的污染等方面,都具有非常重要的现实意义。
本书在总结国内外现有研究成果的基础上,以提高植物及其病害识别的准确率和效率为目标,对植物叶片及其叶部病害的图像分割、特征提取等关键技术开展了系统研究。
目录
第1章绪论1
11研究背景及意义1
12研究现状概述4
13主要植物叶片数据集介绍11
参考文献15
第2章叶片图像分类特征及图像预处理20
21叶片图像识别步骤20
22植物叶片图像的分类特征21
23植物叶片图像预处理技术33
参考文献45
第3章植物叶片图像常用的分割方法56
31图像分割定义56
32基于边缘检测的图像分割方法57
33基于灰度阈值的图像分割方法64
34基于区域的图像分割方法70
35分水岭算法72
36基于小波的图像分割方法74
37基于聚类分析的图像分割方法75
38基于水平集的图像分割方法79
39基于图论的图像分割方法79
参考文献81
第4章**小判别映射植物叶片图像分类方法研究95
41**小判别映射方法96
42实验结果与分析102
43小结105
参考文献105
第5章基于叶片图像和监督正交*差异伸展的植物识别方法
研究108
51监督正交*差异投影算法109
52实验结果与分析112
53小结115
参考文献116
第6章采用局部判别映射算法的玉米病害识别方法研究119
61局部判别映射算法121
62实验结果与分析124
63小结126
参考文献127
第7章监督正交局部保持映射的植物叶片分类方法研究130
71监督正交局部保持映射131
72实验结果与分析137
73小结141
参考文献141
第8章基于叶片图像处理和稀疏表示的植物识别方法146
81稀疏表示和植物识别148
82实验结果与分析156
83小结159
参考文献160
第9章基于稀疏表示字典学习的植物分类方法162
91基于稀疏表示的植物分类方法164
92实验结果与分析168
93小结174
参考文献174
第10章环境信息在黄瓜病害识别方法中的应用研究179
101叶片图像获取179
102实验结果与分析182
103小结186
参考文献187
第11章基于判别映射分析的植物叶片分类方法191
111*边缘准则(MMC)192
112判别映射分析算法(DPA)192
113实验结果194
114小结195
参考文献196
第12章基于卷积神经网络的植物病害识别方法198
121植物病害识别方法的简介198
122卷积神经网络200
123基于三通道CNNs的植物病害识别方法204
124实验结果与分析206
125小结210
参考文献211
第13章基于环境信息和深度自编码网络的农作物病害预测模型214
131农作物的致病因素及病害预测模型简介214
132材料与方法215
133实验结果与分析220
134小结221
参考文献222
第14章基于改进深度置信网络的大棚冬枣病虫害预测模型225
141冬枣病虫害及预测模型简介225
142植物病虫害环境信息获取225
143深度置信网络226
144冬枣病虫害预测模型231
145实验方法232
146小结234
参考文献234
后记239
第1章绪论1
11研究背景及意义1
12研究现状概述4
13主要植物叶片数据集介绍11
参考文献15
第2章叶片图像分类特征及图像预处理20
21叶片图像识别步骤20
22植物叶片图像的分类特征21
23植物叶片图像预处理技术33
参考文献45
第3章植物叶片图像常用的分割方法56
31图像分割定义56
32基于边缘检测的图像分割方法57
33基于灰度阈值的图像分割方法64
34基于区域的图像分割方法70
35分水岭算法72
36基于小波的图像分割方法74
37基于聚类分析的图像分割方法75
38基于水平集的图像分割方法79
39基于图论的图像分割方法79
参考文献81
第4章**小判别映射植物叶片图像分类方法研究95
41**小判别映射方法96
42实验结果与分析102
43小结105
参考文献105
第5章基于叶片图像和监督正交*差异伸展的植物识别方法
研究108
51监督正交*差异投影算法109
52实验结果与分析112
53小结115
参考文献116
第6章采用局部判别映射算法的玉米病害识别方法研究119
61局部判别映射算法121
62实验结果与分析124
63小结126
参考文献127
第7章监督正交局部保持映射的植物叶片分类方法研究130
71监督正交局部保持映射131
72实验结果与分析137
73小结141
参考文献141
第8章基于叶片图像处理和稀疏表示的植物识别方法146
81稀疏表示和植物识别148
82实验结果与分析156
83小结159
参考文献160
第9章基于稀疏表示字典学习的植物分类方法162
91基于稀疏表示的植物分类方法164
92实验结果与分析168
93小结174
参考文献174
第10章环境信息在黄瓜病害识别方法中的应用研究179
101叶片图像获取179
102实验结果与分析182
103小结186
参考文献187
第11章基于判别映射分析的植物叶片分类方法191
111*边缘准则(MMC)192
112判别映射分析算法(DPA)192
113实验结果194
114小结195
参考文献196
第12章基于卷积神经网络的植物病害识别方法198
121植物病害识别方法的简介198
122卷积神经网络200
123基于三通道CNNs的植物病害识别方法204
124实验结果与分析206
125小结210
参考文献211
第13章基于环境信息和深度自编码网络的农作物病害预测模型214
131农作物的致病因素及病害预测模型简介214
132材料与方法215
133实验结果与分析220
134小结221
参考文献222
第14章基于改进深度置信网络的大棚冬枣病虫害预测模型225
141冬枣病虫害及预测模型简介225
142植物病虫害环境信息获取225
143深度置信网络226
144冬枣病虫害预测模型231
145实验方法232
146小结234
参考文献234
后记239
基于图像分析的植物及其病虫害识别方法研究
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×