简介
自然语言处理是人工智能领域的一个重要的研究方向,是计算机科学与语言学的交叉学科。随着互联网的快速发展,网络文本尤其是用户生成的文本呈爆炸性增长,为自然语言处理带来了巨大的应用需求。但是由于自然语言具有歧义性、动态性和非规范性,同时语言理解通常需要丰富的知识和一定的推理能力,为自然语言处理带来了极大的挑战。近年来如火如荼的深度学习技术为解决自然语言处理问题的解决提供了一种可能的思路,已成为有效推动自然语言处理技术发展的变革力量。
本书系统阐述将深度学习技术应用于自然语言处理的方法和技术,深入浅出地介绍了深度学习的基本知识及各种常用的网络结构,并重点介绍了如何使用这些技术处理自然语言。
本书主要面向高等院校自然语言处理和机器学习方向的研究生,也适合自然语言处理或机器学习领域的研究人员以及工业界从事智能相关领域呀发的专业人员阅读参考。
目录
译者序
前言
致谢
第1章引言
11自然语言处理的挑战
12神经网络和深度学习
13自然语言处理中的深度学习
14本书的覆盖面和组织结构
15本书未覆盖的内容
16术语
17数学符号
注释
第一部分有监督分类与前馈神经网络
第2章学习基础与线性模型
21有监督学习和参数化函数
22训练集、测试集和验证集
23线性模型
231二分类
232对数线性二分类
233多分类
24表示
25独热和稠密向量表示
26对数线性多分类
27训练和 化
271损失函数
272正则化
28基于梯度的 化
281随机梯度下降
282实例
283其他训练方法
第3章从线性模型到多层感知器
31线性模型的局限性:异或问题
32非线性输入转换
33核方法
34可训练的映射函数
第4章前馈神经网络
41一个关于大脑的比喻
42数学表示
43表达能力
44常见的非线性函数
45损失函数
46正则化与丢弃法
47相似和距离层
48嵌入层
第5章神经网络训练
51计算图的抽象概念
511前向计算
512反向计算(导数、反向传播)
513软件
514实现流程
515网络构成
52实践经验
521优化算法的选择
522初始化
523重启与集成
524梯度消失与梯度爆炸
525饱和神经元与死神经元
526随机打乱
527学习率
528minibatch
第二部分处理自然语言数据
第6章文本特征构造
61NLP分类问题中的拓扑结构
62NLP问题中的特征
621直接可观测特征
622可推断的语言学特征
623核心特征与组合特征
624n元组特征
625分布特征
第7章NLP特征的案例分析
71文本分类:语言识别
72文本分类:主题分类
73文本分类:作者归属
74上下文中的单词:词性标注
75上下文中的单词:命名实体识别
76上下文中单词的语言特征:介词词义消歧
77上下文中单词的关系:弧分解分析
第8章从文本特征到输入
81编码分类特征
811独热编码
812稠密编码(特征嵌入)
813稠密向量与独热表示
82组合稠密向量
821基于窗口的特征
822可变特征数目:连续词袋
83独热和稠密向量间的关系
84杂项
841距离与位置特征
842补齐、未登录词和词丢弃
843特征组合
844向量共享
845维度
846嵌入的词表
847网络的输出
85例子:词性标注
86例子:弧分解分析
第9章语言模型
91语言模型任务
92语言模型评估:困惑度
93语言模型的传统方法
931延伸阅读
932传统语言模型的限制
94神经语言模型
95使用语言模型进行生成
96副产品:词的表示
第10章预训练的词表示
101随机初始化
102有监督的特定任务的预训练
103无监督的预训练
104词嵌入算法
1041分布式假设和词表示
1042从神经语言模型到分布式表示
1043词语联系
1044其他算法
105上下文的选择
1051窗口方法
1052句子、段落或文档
1053句法窗口
1054多语种
1055基于字符级别和子词的表示
106处理多字单元和字变形
107分布式方法的限制
第11章使用词嵌入
111词向量的获取
112词的相似度
113词聚类
114寻找相似词
115同中选异
116短文档相似度
117词的类比
118改装和映射
119实用性和陷阱
第12章案例分析:一种用于句子意义推理的前馈结构
121自然语言推理与 SNLI数据集
122文本相似网络
第三部分特殊的结构
第13章n元语法探测器:卷积神经网络
131基础卷积池化
1311文本上的一维卷积
1312向量池化
1313变体
132其他选择:特征哈希
133层次化卷积
第14章循环神经网络:序列和栈建模
141RNN抽象描述
142RNN的训练
143RNN常见使用模式
1431接收器
1432编码器
1433传感器
144双向RNN
145堆叠RNN
146用于表示栈的RNN
147文献阅读的注意事项
第15章实际的循环神经网络结构
151作为RNN的CBOW
152简单RNN
153门结构
1531长短期记忆网络
1532门限循环单元
154其他变体
155应用到RNN的丢弃机制
第16章通过循环网络建模
161接收器
1611情感分类器
1612主谓一致语法检查
162作为特征提取器的RNN
1621词性标注
1622RNNCNN文本分类
1623弧分解依存句法分析
第17章条件生成
171RNN生成器
172条件生成(编码器解码器)
1721序列到序列模型
1722应用
1723其他条件上下文
173无监督的句子相似性
174结合注意力机制的条件生成
1741计算复杂性
1742可解释性
175自然语言处理中基于注意力机制的模型
1751机器翻译
1752形态屈折
1753句法分析
第四部分其他主题
第18章用递归神经网络对树建模
181形式化定义
182扩展和变体
183递归神经网络的训练
184一种简单的替代——线性化树
185前景
第19章结构化输出预测
191基于搜索的结构化预测
191
前言
致谢
第1章引言
11自然语言处理的挑战
12神经网络和深度学习
13自然语言处理中的深度学习
14本书的覆盖面和组织结构
15本书未覆盖的内容
16术语
17数学符号
注释
第一部分有监督分类与前馈神经网络
第2章学习基础与线性模型
21有监督学习和参数化函数
22训练集、测试集和验证集
23线性模型
231二分类
232对数线性二分类
233多分类
24表示
25独热和稠密向量表示
26对数线性多分类
27训练和 化
271损失函数
272正则化
28基于梯度的 化
281随机梯度下降
282实例
283其他训练方法
第3章从线性模型到多层感知器
31线性模型的局限性:异或问题
32非线性输入转换
33核方法
34可训练的映射函数
第4章前馈神经网络
41一个关于大脑的比喻
42数学表示
43表达能力
44常见的非线性函数
45损失函数
46正则化与丢弃法
47相似和距离层
48嵌入层
第5章神经网络训练
51计算图的抽象概念
511前向计算
512反向计算(导数、反向传播)
513软件
514实现流程
515网络构成
52实践经验
521优化算法的选择
522初始化
523重启与集成
524梯度消失与梯度爆炸
525饱和神经元与死神经元
526随机打乱
527学习率
528minibatch
第二部分处理自然语言数据
第6章文本特征构造
61NLP分类问题中的拓扑结构
62NLP问题中的特征
621直接可观测特征
622可推断的语言学特征
623核心特征与组合特征
624n元组特征
625分布特征
第7章NLP特征的案例分析
71文本分类:语言识别
72文本分类:主题分类
73文本分类:作者归属
74上下文中的单词:词性标注
75上下文中的单词:命名实体识别
76上下文中单词的语言特征:介词词义消歧
77上下文中单词的关系:弧分解分析
第8章从文本特征到输入
81编码分类特征
811独热编码
812稠密编码(特征嵌入)
813稠密向量与独热表示
82组合稠密向量
821基于窗口的特征
822可变特征数目:连续词袋
83独热和稠密向量间的关系
84杂项
841距离与位置特征
842补齐、未登录词和词丢弃
843特征组合
844向量共享
845维度
846嵌入的词表
847网络的输出
85例子:词性标注
86例子:弧分解分析
第9章语言模型
91语言模型任务
92语言模型评估:困惑度
93语言模型的传统方法
931延伸阅读
932传统语言模型的限制
94神经语言模型
95使用语言模型进行生成
96副产品:词的表示
第10章预训练的词表示
101随机初始化
102有监督的特定任务的预训练
103无监督的预训练
104词嵌入算法
1041分布式假设和词表示
1042从神经语言模型到分布式表示
1043词语联系
1044其他算法
105上下文的选择
1051窗口方法
1052句子、段落或文档
1053句法窗口
1054多语种
1055基于字符级别和子词的表示
106处理多字单元和字变形
107分布式方法的限制
第11章使用词嵌入
111词向量的获取
112词的相似度
113词聚类
114寻找相似词
115同中选异
116短文档相似度
117词的类比
118改装和映射
119实用性和陷阱
第12章案例分析:一种用于句子意义推理的前馈结构
121自然语言推理与 SNLI数据集
122文本相似网络
第三部分特殊的结构
第13章n元语法探测器:卷积神经网络
131基础卷积池化
1311文本上的一维卷积
1312向量池化
1313变体
132其他选择:特征哈希
133层次化卷积
第14章循环神经网络:序列和栈建模
141RNN抽象描述
142RNN的训练
143RNN常见使用模式
1431接收器
1432编码器
1433传感器
144双向RNN
145堆叠RNN
146用于表示栈的RNN
147文献阅读的注意事项
第15章实际的循环神经网络结构
151作为RNN的CBOW
152简单RNN
153门结构
1531长短期记忆网络
1532门限循环单元
154其他变体
155应用到RNN的丢弃机制
第16章通过循环网络建模
161接收器
1611情感分类器
1612主谓一致语法检查
162作为特征提取器的RNN
1621词性标注
1622RNNCNN文本分类
1623弧分解依存句法分析
第17章条件生成
171RNN生成器
172条件生成(编码器解码器)
1721序列到序列模型
1722应用
1723其他条件上下文
173无监督的句子相似性
174结合注意力机制的条件生成
1741计算复杂性
1742可解释性
175自然语言处理中基于注意力机制的模型
1751机器翻译
1752形态屈折
1753句法分析
第四部分其他主题
第18章用递归神经网络对树建模
181形式化定义
182扩展和变体
183递归神经网络的训练
184一种简单的替代——线性化树
185前景
第19章结构化输出预测
191基于搜索的结构化预测
191
基于深度学习的自然语言处理
光盘服务联系方式: 020-38250260 客服QQ:4006604884