
微信扫一扫,移动浏览光盘
简介
《工程弹性力学》是在总结作者数十年对工科学生弹性力学教学经验的基础上,以及结合国内外最新科研及工程应用的资料撰写而成。全书共分12章,内容包括:弹性力学问题的建立,平面问题和空间问题的解析方法,弹性薄板的弯曲问题,变分法,有限单元法(包括平面问题、空间问题和薄板弯曲问题),有限差分法,加权残值法和边界单元法等。《工程弹性力学》的特点是对经典理论运用深入浅出、简明扼要的叙述方法;物理意义和工程背景突出;内容结构合理,既可适用于多学时教学,也可适用于少学时教学。与同类教材相比,《工程弹性力学》的特点还在于着重介绍近几年来的有广泛应用价值的各种数值解法,具有相当强的实用性。《工程弹性力学》主要作为工程力学、土木工程,机械制造等专业的教材,也可供有关专业的研究者和工程技术人员参考。
目录
第一章 绪论
§1-1 弹性力学的任务、研究对象、范围及方法
§1-2 弹性力学的基本假设
第二章 弹性力学问题的建立
§2-1 应力和一点的应力状态
§2-2 和坐标轴倾斜的微分面上的应力
§2-3 平衡微分方程 静力边界条件
§2-4 位移分量和应变分量 几何方程
§2-5 应变协调方程
§2-6 广义虎克定律
§2-7 弹性力学的基本方程及三类边值问题
§2-8 解决问题的两条途径
§2-9 解的唯一性定律 逆解法和半逆解法
§2-10 圆柱体的扭转 圣维南原理
习 题
第三章 弹性力学平面问题
§3-1 平面应变问题和平面应力问题
§3-2 化平面问题为双调和方程的边值问题
§3-3 代数多项式解答
§3-4 若干典型实例
.§3-5 平面问题的极坐标方程
§3-6 平面轴对称应力问题
§3-7 具有小圆孔的平板均匀拉伸
§3-8 楔形体问题
§3-9 半平面问题
习 题
第四章 弹性力学空间问题
§4-1 一点的应力状态和应变状态分析
§4-2 柱形杆的扭转
§4-3 实例
§4-4 薄壁杆的扭转
§4-5 轴对称情况下基本方程的柱坐标形式
§4-6 借助于拉甫(love)位移函数求解空间
轴对称问题
习 题
第五章 薄板的小挠度弯曲
§5-1 一般概念和基本假设
§5-2 基本关系式和基本方程的建立
§5-3 矩形薄板的边界条件
§5-4 简支边矩形薄板的纳维解法
§5-5 矩形薄板的莱维解法
§5-6 圆形薄板的弯曲
§5-7 圆形薄板的轴对称弯曲
习 题
第六章 弹性力学问题的变分解法
§6-1 弹性体的应变能
§6-2 位移变分方程 最小势能原理
§6-3 基于最小势能原理的近似计算方法
§6-4 瑞利-李兹法和伽辽金法的应用
§6-5 应力变分方程 最小余能原理
§6-6 利用应力变分原理的近似解法
习 题
第七章 弹性力学平面问题有限单元法
§7-1 基本量及其关系的矩阵表示
§7-2 有限单元法解题思路
§7-3 位移模式与解答的收敛准则
§7-4 单元分析
§7-5 结构整体分析
§7-6 解题的基本步骤及若干问题的说明
§7-7 采用常应变三角形单元的计算实例
§7-8 矩形双线性单元及应用
§7-9 三角形单元的面积坐标
§7-10 六结点三角形单元及应用
§7-11 等参数单元的概念
§7-12 四结点等参数单元
§7-13 八结点等参数单元
§7-14 等参数单元的讨论及高斯积分法
习 题
第八章 弹性力学空间问题有限单元法
§8-1 空间问题有限单元法概述
§8-2 四面体常应变单元位移模式
§8-3 单元分析
§8-4 以四面体为基础的组合单元
§8-5 计算实例
§8-6 八结点六面体等参数单元
§8-7 二十结点空间等参数单元
§8-8 空间组合单元及等参数单元算例 单元比较
与选择
习 题
第九章 薄板弯曲问题的有限单元法
§9-1 概述
§9-2 矩形薄板单元的位移模式 解答的收敛性
§9-3 矩形薄板单元的单元分析
§9-4 边界条件及计算实例
§9-5 三角形薄板单元简介 位移模式
§9-6 三角形薄板单元的单元分析 计算实例
习 题
第十章 有限差分法
§10-1 差分公式的导出
§10-2 梁弯曲问题的差分解
§10-3 平面问题的差分解
§10-4 平面问题的差分解举例
§10-5 矩形薄板弯曲问题的差分解
§10-6 矩形薄板弯曲问题的差分解举例
习 题
第十一章 加权残值法
§11-1 加权残值法的基本概念
§11-2 加权残值法的基本方法
§11-3 用加权残值法解梁弯曲问题举例
§11-4 用加权残值法解薄板弯曲问题举例
§11-5 离散型加权残值法
习 题
第十二章 边界单元法
§12-1 弹性力学基本公式的下标记法
§12-2 弹性力学边界积分方程
§12-3 弹性力学边界单元法
§12-4 弹性力学平面问题边界单元法
§12-5 边界单元法应用例题
习 题
部分习题参考答案
主要参考文献
§1-1 弹性力学的任务、研究对象、范围及方法
§1-2 弹性力学的基本假设
第二章 弹性力学问题的建立
§2-1 应力和一点的应力状态
§2-2 和坐标轴倾斜的微分面上的应力
§2-3 平衡微分方程 静力边界条件
§2-4 位移分量和应变分量 几何方程
§2-5 应变协调方程
§2-6 广义虎克定律
§2-7 弹性力学的基本方程及三类边值问题
§2-8 解决问题的两条途径
§2-9 解的唯一性定律 逆解法和半逆解法
§2-10 圆柱体的扭转 圣维南原理
习 题
第三章 弹性力学平面问题
§3-1 平面应变问题和平面应力问题
§3-2 化平面问题为双调和方程的边值问题
§3-3 代数多项式解答
§3-4 若干典型实例
.§3-5 平面问题的极坐标方程
§3-6 平面轴对称应力问题
§3-7 具有小圆孔的平板均匀拉伸
§3-8 楔形体问题
§3-9 半平面问题
习 题
第四章 弹性力学空间问题
§4-1 一点的应力状态和应变状态分析
§4-2 柱形杆的扭转
§4-3 实例
§4-4 薄壁杆的扭转
§4-5 轴对称情况下基本方程的柱坐标形式
§4-6 借助于拉甫(love)位移函数求解空间
轴对称问题
习 题
第五章 薄板的小挠度弯曲
§5-1 一般概念和基本假设
§5-2 基本关系式和基本方程的建立
§5-3 矩形薄板的边界条件
§5-4 简支边矩形薄板的纳维解法
§5-5 矩形薄板的莱维解法
§5-6 圆形薄板的弯曲
§5-7 圆形薄板的轴对称弯曲
习 题
第六章 弹性力学问题的变分解法
§6-1 弹性体的应变能
§6-2 位移变分方程 最小势能原理
§6-3 基于最小势能原理的近似计算方法
§6-4 瑞利-李兹法和伽辽金法的应用
§6-5 应力变分方程 最小余能原理
§6-6 利用应力变分原理的近似解法
习 题
第七章 弹性力学平面问题有限单元法
§7-1 基本量及其关系的矩阵表示
§7-2 有限单元法解题思路
§7-3 位移模式与解答的收敛准则
§7-4 单元分析
§7-5 结构整体分析
§7-6 解题的基本步骤及若干问题的说明
§7-7 采用常应变三角形单元的计算实例
§7-8 矩形双线性单元及应用
§7-9 三角形单元的面积坐标
§7-10 六结点三角形单元及应用
§7-11 等参数单元的概念
§7-12 四结点等参数单元
§7-13 八结点等参数单元
§7-14 等参数单元的讨论及高斯积分法
习 题
第八章 弹性力学空间问题有限单元法
§8-1 空间问题有限单元法概述
§8-2 四面体常应变单元位移模式
§8-3 单元分析
§8-4 以四面体为基础的组合单元
§8-5 计算实例
§8-6 八结点六面体等参数单元
§8-7 二十结点空间等参数单元
§8-8 空间组合单元及等参数单元算例 单元比较
与选择
习 题
第九章 薄板弯曲问题的有限单元法
§9-1 概述
§9-2 矩形薄板单元的位移模式 解答的收敛性
§9-3 矩形薄板单元的单元分析
§9-4 边界条件及计算实例
§9-5 三角形薄板单元简介 位移模式
§9-6 三角形薄板单元的单元分析 计算实例
习 题
第十章 有限差分法
§10-1 差分公式的导出
§10-2 梁弯曲问题的差分解
§10-3 平面问题的差分解
§10-4 平面问题的差分解举例
§10-5 矩形薄板弯曲问题的差分解
§10-6 矩形薄板弯曲问题的差分解举例
习 题
第十一章 加权残值法
§11-1 加权残值法的基本概念
§11-2 加权残值法的基本方法
§11-3 用加权残值法解梁弯曲问题举例
§11-4 用加权残值法解薄板弯曲问题举例
§11-5 离散型加权残值法
习 题
第十二章 边界单元法
§12-1 弹性力学基本公式的下标记法
§12-2 弹性力学边界积分方程
§12-3 弹性力学边界单元法
§12-4 弹性力学平面问题边界单元法
§12-5 边界单元法应用例题
习 题
部分习题参考答案
主要参考文献
工程弹性力学[电子资源.图书]
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×
