简介
目录
Preface xi
1. Introduction
1.1 General Principles of Solar Thermal Power Plant Design 3
1.2 Brief Introduction to Solar Thermal Power Generation 7
2. The Solar Resource and Meteorological Parameters
2.1 The Nature of the Solar Resource 47
2.2 The Solar Constant and Radiation Spectrum 48
2.3 Atmospheric Influences on Solar Irradiation 50
2.4 Calculating Methods for Solar Position 52
2.5 Distribution of the Solar Resource in Several Typical Areas of China 60
2.6 Solar Irradiance Prediction Methods 83
2.7 Distribution of Solar Direct Normal Radiation Resources in China 89
2.8 Various Special Climate Conditions in the Plant Area 100
2.9 Measuring Instrument 107
2.10 Global Direct Normal Irradiance Distributions 112
3. General Design of a Solar Thermal Power Plant
3.1 Power Plant Design Point 117
3.2 Heliostat Field Efficiency Analysis for Power Plants 119
3.3 Thermal Performance of Parabolic Trough Collector 150
3.4 Basic Data Required by Power Plant Design 192
3.5 Major Parameters and Principles of Design 193
3.6 Description of General Parameters of the Power Plant 194
3.7 Calculation of Annual Power Generation 194
3.8 Determination of Thermal Storage Reserve 214
3.9 Main Points for Power Plant Site Plan 216
3.10 Notices for Concentration Field Layout 223
4. Design of the Concentration System
4.1 General System Description 225
4.2 Principles for Concentration Field Layout 229
4.3 Design of the Solar Tower Power Plant Concentrating Field 243
4.4 Control Design of the Heliostat Field of a Solar Tower Power Plant 256
4.5 Solar Field Design of Parabolic Trough Power Plant 264
4.6 Description of solar Concentrator 273
4.7 Instantaneous Efficiency 276
4.8 Design of the Parabolic Trough Collector Field 279
4.9 Concentrator Field Control Design of the Parabolic Trough Power Plant 281
4.10 Wind Load Characteristics of the Concentrator 283
5. Design of the Receiver System
5.1 General Receiver System Description 319
5.2 Selection of Materials for the Receiver System 327
5.3 Selection of Pipes and Pumps for Receiver System 330
5.4 Receiver System Control 331
5.5 Design of the Operation Modes of the Receiver System 334
5.6 The Discharge System and Equipment of the Receiver 336
5.7 Vacuum Performance of the Parabolic Trough Receiver Tube 339
6. Thermal Storage Systems
6.1 General System Description 388
6.2 Technical Requirements of Thermal Storage Systems 392
6.3 Thermal Storage Materials and Modes 393
6.4 Categories and Constitutions of Thermal Storage Systems 401
6.5 Selection of Thermal Storage Materials and Tanks 412
6.6 Charging and Discharge Equipment of the Thermal Storage Tank and Respective Process Design 413
6.7 Thermal Storage System Control 414
6.8 Facilities for Thermal Storage System Inspection 415
7. Site Selection, Power Load, and Power Generation Procedures
7.1 Site Selection 417
7.2 Power Load and Power Generation Procedures 423
8. Plant Layout Planning
8.1 Basic Rules 425
8.2 Layout of the Main Buildings and Concentration Field 428
8.3 Communication and Transportation 429
8.4 Vertical Layout 430
8.5 Pipeline Layout 432
9. Main Powerhouse Layout
9.1 Direction of Main Powerhouse 435
9.2 Main Powerhouse and Thermal Storage 435
9.3 Solar Thermal Storage System Layout 435
10. Water Treatment Equipment and System
10.1 Receiver and Evaporator Makeup Water Treatment 437
10.2 Calculation of Water Treatment Equipment 437
10.3 Feed Water and Boiler Water Modification and Thermal System Steam Sampling 438
10.4 Anticorrosion 438
11. Power System
11.1 Power Grid Connection of Power Plant 439
11.2 System Protection 439
11.3 System Communication 439
12. Electrical Equipment and System
12.1 High-Voltage Electrical Installations 441
12.2 Main Electrical Control Room 441
12.3 DC System 441
12.4 Electrical Measuring Instrument 442
12.5 Relay Protection and Automatic Safety Device 442
12.6 Lighting System 442
12.7 Cable Selection and Layout 443
12.8 Overvoltage Protection and Grounding 443
12.9 Electrical Installations in a Dangerous Environment with Potential Explosions and Fire Hazards 443
13. Thermal Automation
13.1 Basic Rules 445
13.2 Control Mode 446
13.3 Thermal Inspection 446
13.4 Automatic Adjustment 446
13.5 Thermal Protection 447
13.6 Interlocking 447
13.7 Power Supply and Steam Supply 447
13.8 Control Room 448
13.9 Cables, Conduits, and Local Equipment Layout 448
13.10 Basic Rules for Building Space Heating 449
13.11 Solar Tower 449
13.12 Heating Network and Heating Station in the Plant Area 450
14. Architecture and Structure
14.1 Basic Rules 451
14.2 Fire Protection 452
14.3 Interior Environment 453
15. Auxiliary and Affiliated Facilities 455
16. Environmental Protection of the Concentrating Solar Power Plant
16.1 Basic Rules 457
16.2 Requirements for Environmental Protection Design 457
16.3 Pollution Prevention and Treatment 458
16.4 Environmental Protection Facilities 458
References 459
Index 463
1. Introduction
1.1 General Principles of Solar Thermal Power Plant Design 3
1.2 Brief Introduction to Solar Thermal Power Generation 7
2. The Solar Resource and Meteorological Parameters
2.1 The Nature of the Solar Resource 47
2.2 The Solar Constant and Radiation Spectrum 48
2.3 Atmospheric Influences on Solar Irradiation 50
2.4 Calculating Methods for Solar Position 52
2.5 Distribution of the Solar Resource in Several Typical Areas of China 60
2.6 Solar Irradiance Prediction Methods 83
2.7 Distribution of Solar Direct Normal Radiation Resources in China 89
2.8 Various Special Climate Conditions in the Plant Area 100
2.9 Measuring Instrument 107
2.10 Global Direct Normal Irradiance Distributions 112
3. General Design of a Solar Thermal Power Plant
3.1 Power Plant Design Point 117
3.2 Heliostat Field Efficiency Analysis for Power Plants 119
3.3 Thermal Performance of Parabolic Trough Collector 150
3.4 Basic Data Required by Power Plant Design 192
3.5 Major Parameters and Principles of Design 193
3.6 Description of General Parameters of the Power Plant 194
3.7 Calculation of Annual Power Generation 194
3.8 Determination of Thermal Storage Reserve 214
3.9 Main Points for Power Plant Site Plan 216
3.10 Notices for Concentration Field Layout 223
4. Design of the Concentration System
4.1 General System Description 225
4.2 Principles for Concentration Field Layout 229
4.3 Design of the Solar Tower Power Plant Concentrating Field 243
4.4 Control Design of the Heliostat Field of a Solar Tower Power Plant 256
4.5 Solar Field Design of Parabolic Trough Power Plant 264
4.6 Description of solar Concentrator 273
4.7 Instantaneous Efficiency 276
4.8 Design of the Parabolic Trough Collector Field 279
4.9 Concentrator Field Control Design of the Parabolic Trough Power Plant 281
4.10 Wind Load Characteristics of the Concentrator 283
5. Design of the Receiver System
5.1 General Receiver System Description 319
5.2 Selection of Materials for the Receiver System 327
5.3 Selection of Pipes and Pumps for Receiver System 330
5.4 Receiver System Control 331
5.5 Design of the Operation Modes of the Receiver System 334
5.6 The Discharge System and Equipment of the Receiver 336
5.7 Vacuum Performance of the Parabolic Trough Receiver Tube 339
6. Thermal Storage Systems
6.1 General System Description 388
6.2 Technical Requirements of Thermal Storage Systems 392
6.3 Thermal Storage Materials and Modes 393
6.4 Categories and Constitutions of Thermal Storage Systems 401
6.5 Selection of Thermal Storage Materials and Tanks 412
6.6 Charging and Discharge Equipment of the Thermal Storage Tank and Respective Process Design 413
6.7 Thermal Storage System Control 414
6.8 Facilities for Thermal Storage System Inspection 415
7. Site Selection, Power Load, and Power Generation Procedures
7.1 Site Selection 417
7.2 Power Load and Power Generation Procedures 423
8. Plant Layout Planning
8.1 Basic Rules 425
8.2 Layout of the Main Buildings and Concentration Field 428
8.3 Communication and Transportation 429
8.4 Vertical Layout 430
8.5 Pipeline Layout 432
9. Main Powerhouse Layout
9.1 Direction of Main Powerhouse 435
9.2 Main Powerhouse and Thermal Storage 435
9.3 Solar Thermal Storage System Layout 435
10. Water Treatment Equipment and System
10.1 Receiver and Evaporator Makeup Water Treatment 437
10.2 Calculation of Water Treatment Equipment 437
10.3 Feed Water and Boiler Water Modification and Thermal System Steam Sampling 438
10.4 Anticorrosion 438
11. Power System
11.1 Power Grid Connection of Power Plant 439
11.2 System Protection 439
11.3 System Communication 439
12. Electrical Equipment and System
12.1 High-Voltage Electrical Installations 441
12.2 Main Electrical Control Room 441
12.3 DC System 441
12.4 Electrical Measuring Instrument 442
12.5 Relay Protection and Automatic Safety Device 442
12.6 Lighting System 442
12.7 Cable Selection and Layout 443
12.8 Overvoltage Protection and Grounding 443
12.9 Electrical Installations in a Dangerous Environment with Potential Explosions and Fire Hazards 443
13. Thermal Automation
13.1 Basic Rules 445
13.2 Control Mode 446
13.3 Thermal Inspection 446
13.4 Automatic Adjustment 446
13.5 Thermal Protection 447
13.6 Interlocking 447
13.7 Power Supply and Steam Supply 447
13.8 Control Room 448
13.9 Cables, Conduits, and Local Equipment Layout 448
13.10 Basic Rules for Building Space Heating 449
13.11 Solar Tower 449
13.12 Heating Network and Heating Station in the Plant Area 450
14. Architecture and Structure
14.1 Basic Rules 451
14.2 Fire Protection 452
14.3 Interior Environment 453
15. Auxiliary and Affiliated Facilities 455
16. Environmental Protection of the Concentrating Solar Power Plant
16.1 Basic Rules 457
16.2 Requirements for Environmental Protection Design 457
16.3 Pollution Prevention and Treatment 458
16.4 Environmental Protection Facilities 458
References 459
Index 463
太阳能热发电站设计(英文版)
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×