简介
《索伯列夫乘子理论》由马兹耶所著,旨在为读者全面讲述微分函数空间对中点乘子理论。这个理论是在过去的三十年中通过众多学者大量积累发展起来的,《索伯列夫乘子理论》是前人结果的延伸和扩展。第一部分介绍了乘子理论,囊括了众多理论和概念,如,迹不等式、乘子的解析特性、索伯列夫乘子空间和其他空间之间的关系、乘子空间最大子代数、迹和乘子扩展、乘子的范数和紧性以及乘子的综合特性;第二部分包括了该理论的大量应用,索伯列夫空间对中微分算子的连续性和紧性;乘子作为线性和伪线性双曲方程的解;lipschitz域中单层和双层势能理论的高级正则性和双曲边界值问题l_p理论中边界正则性;索伯列夫空间中的奇异积分算子。这部著作综合性强,文笔流畅,结构紧凑,是泛函分析,偏微分方程和伪微分算子等相关数学专业不可多得的教材和参考书。
目录
Introduction
Part Ⅰ description and properties of multipliers
1 trace inequalities for functions in sobolev spaces.
2 multipliers in pairs of sobolev spaces
3 multipliers in pairs of potential spaces
4 the space m(bmp→blp) with p>1
5 the space m(bm1→bl1)
6 maximal algebras in spaces of multipliers
7 essential norm and compactness of multipliers
8 traces and extensions of multipliers
9 sobolev multipliers in a domain, multiplier mappings and manifolds
Part Ⅱ Applications of Multipliers to Differential and Integral Operators
10 differential operators in pairs of sobolev spaces
11 schrsdinger operator and m(w21→w2-1)
12 relativistic schrsdinger operator and m(w21/2→w21/2)
13 multipliers as solutions to elliptic equations
14 regularity of the boundary in lv-theory of elliptic boundary value problems
15 multipliers in the classical layer potential theory for lipschitz domains
16 applications of multipliers to the theory of integral operators
References
List of symbols
Author and subject index
Part Ⅰ description and properties of multipliers
1 trace inequalities for functions in sobolev spaces.
2 multipliers in pairs of sobolev spaces
3 multipliers in pairs of potential spaces
4 the space m(bmp→blp) with p>1
5 the space m(bm1→bl1)
6 maximal algebras in spaces of multipliers
7 essential norm and compactness of multipliers
8 traces and extensions of multipliers
9 sobolev multipliers in a domain, multiplier mappings and manifolds
Part Ⅱ Applications of Multipliers to Differential and Integral Operators
10 differential operators in pairs of sobolev spaces
11 schrsdinger operator and m(w21→w2-1)
12 relativistic schrsdinger operator and m(w21/2→w21/2)
13 multipliers as solutions to elliptic equations
14 regularity of the boundary in lv-theory of elliptic boundary value problems
15 multipliers in the classical layer potential theory for lipschitz domains
16 applications of multipliers to the theory of integral operators
References
List of symbols
Author and subject index
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×