简介
本书汇集摩擦学研究的*进展及作者和其同事从事该领域的研究成果,系统地阐述摩擦学的基本原理与应用,全面反映现代摩擦学的研究状况和发展趋势。全书共 21章,由润滑理论与润滑设计、摩擦磨损机理与控制、应用摩擦学等 3部分组成。除摩擦学传统内容外,还论述了摩擦学与相关学科交叉而形成的研究领域。本书针对工程实际中的各种摩擦学现象,着重阐述摩擦过程中的变化规律和特征,进而介绍基本理论、分析计算方法以及实验测试技术,并说明它们在工程中的实际应用。本书可作为机械设计与理论专业的研究生教材以及高等院校机械工程各类专业师生的教学参考书,也可以供从事机械设计和研究的工程技术人员参考。
目录
Contents
About the Authors xvii
Second Edition Preface xix
Preface xxi
Introduction xxiii
Part I Lubrication Theory 1
1 Properties of Lubricants 3
1.1 Lubrication States 3
1.2 Density of Lubricant 5
1.3 Viscosity of Lubricant 7
1.3.1 Dynamic Viscosity and KinematicViscosity 7
1.3.1.1 Dynamic Viscosity 7
1.3.1.2 Kinematic Viscosity 8
1.3.2 Relationship between Viscosity andTemperature 9
1.3.2.1 Viscosity–Temperature Equations 9
1.3.2.2 ASTM Viscosity–Temperature Diagram9
1.3.2.3 Viscosity Index 10
1.3.3 Relationship between Viscosity andPressure 10
1.3.3.1 Relationships between Viscosity,Temperature and Pressure 11
1.4 Non-Newtonian Behaviors 12
1.4.1 Ree–Eyring Constitutive Equation 12
1.4.2 Visco-Plastic Constitutive Equation13
1.4.3 Circular Constitutive Equation 13
1.4.4 Temperature-Dependent ConstitutiveEquation 13
1.4.5 Visco-Elastic Constitutive Equation14
1.4.6 Nonlinear Visco-Elastic ConstitutiveEquation 14
1.4.7 A Simple Visco-Elastic ConstitutiveEquation 15
1.4.7.1 Pseudoplasticity 16
1.4.7.2 Thixotropy 16
1.5 Wettability of Lubricants 16
1.5.1 Wetting and Contact Angle 17
1.5.2 Surface Tension 17
1.6 Measurement and Conversion of Viscosity19
1.6.1 Rotary Viscometer 19
1.6.2 Off-Body Viscometer 19
1.6.3 Capillary Viscometer 19
References 21
2 Basic Theories of HydrodynamicLubrication 22
2.1 Reynolds Equation 22
2.1.1 Basic Assumptions 22
2.1.2 Derivation of the Reynolds Equation23
2.1.2.1 Force Balance 23
2.1.2.2 General Reynolds Equation 25
2.2 Hydrodynamic Lubrication 26
2.2.1 Mechanism of Hydrodynamic Lubrication26
2.2.2 Boundary Conditions and InitialConditions of the Reynolds Equation 27
2.2.2.1 Boundary Conditions 27
2.2.2.2 Initial Conditions 28
2.2.3 Calculation of HydrodynamicLubrication 28
2.2.3.1 Load-Carrying CapacityW 28
2.2.3.2 Friction ForceF 28
2.2.3.3 Lubricant FlowQ 29
2.3 Elastic Contact Problems 29
2.3.1 Line Contact 29
2.3.1.1 Geometry and Elasticity Simulations29
2.3.1.2 Contact Area and Stress 30
2.3.2 Point Contact 31
2.3.2.1 Geometric Relationship 31
2.3.2.2 Contact Area and Stress 32
2.4 Entrance Analysis of EHL 34
2.4.1 Elastic Deformation of Line Contacts35
2.4.2 Reynolds Equation Considering theEffect of Pressure-Viscosity 35
2.4.3 Discussion 36
2.4.4 Grubin FilmThickness Formula 37
2.5 Grease Lubrication 38
References 40
3 Numerical Methods of LubricationCalculation 41
3.1 Numerical Methods of Lubrication 42
3.1.1 Finite Difference Method 42
3.1.1.1 Hydrostatic Lubrication 44
3.1.1.2 Hydrodynamic Lubrication 44
3.1.2 Finite Element Method and BoundaryElement Method 48
3.1.2.1 Finite Element Method (FEM) 48
3.1.2.2 Boundary Element Method 49
3.1.3 Numerical Techniques 51
3.1.3.1 Parameter Transformation 51
3.1.3.2 Numerical Integration 51
3.1.3.3 Empirical Formula 53
3.1.3.4 SuddenThickness Change 53
3.2 Numerical Solution of the EnergyEquation 54
3.2.1 Conduction and Convection of Heat 55
3.2.1.1 Conduction Heat Hd 55
3.2.1.2 Convection Heat Hv 55
3.2.2 Energy Equation 56
3.2.3 Numerical Solution of Energy Equation59
3.3 Numerical Solution ofElastohydrodynamic Lubrication 60
3.3.1 EHL Numerical Solution of LineContacts 60
3.3.1.1 Basic Equations 60
3.3.1.2 Solution of the Reynolds Equation62
3.3.1.3 Calculation of Elastic Deformation62
3.3.1.4 Dowson–Higginson FilmThicknessFormula of Line Contact EHL 64
3.3.2 EHL Numerical Solution of PointContacts 64
3.3.2.1 The Reynolds Equation 65
3.3.2.2 Elastic Deformation Equation 66
3.3.2.3 Hamrock–Dowson FilmThicknessFormula of Point Contact EHL 66
3.4 Multi-Grid Method for Solving EHLProblems 68
3.4.1 Basic Principles of Multi-Grid Method68
3.4.1.1 Grid Structure 68
3.4.1.2 Discrete Equation 68
3.4.1.3 Transformation 69
3.4.2 Nonlinear Full Approximation Schemefor the Multi-Grid Method 69
3.4.3 V andWIterations 71
3.4.4 Multi-Grid Solution of EHL Problems71
3.4.4.1 Iteration Methods 71
3.4.4.2 Iterative Division 72
3.4.4.3 Relaxation Factors 73
3.4.4.4 Numbers of Iteration Times 73
3.4.5 Multi-Grid Integration Method 73
3.4.5.1 Transfer Pressure Downwards 74
3.4.5.2 Transfer Integral CoefficientsDownwards 74
3.4.5.3 Integration on the Coarser Mesh 74
3.4.5.4 Transfer Back Integration Results75
3.4.5.5 Modification on the Finer Mesh 75
References 76
4 Lubrication Design of Typical MechanicalElements 78
4.1 Slider and Thrust Bearings 78
4.1.1 Basic Equations 78
4.1.1.1 Reynolds Equation 78
4.1.1.2 Boundary Conditions 78
4.1.1.3 Continuous Conditions 79
4.1.2 Solutions of Slider Lubrication 79
4.2 Journal Bearings 81
4.2.1 Axis Position and Clearance Shape 81
4.2.2 Infinitely Narrow Bearings 82
4.2.2.1 Load-Carrying Capacity 83
4.2.2.2 Deviation Angle and Axis Track 83
4.2.2.3 Flow 84
4.2.2.4 Frictional Force and FrictionCoefficient 84
4.2.3 InfinitelyWide Bearings 85
4.3 Hydrostatic Bearings 88
4.3.1 Hydrostatic Thrust Plate 89
4.3.2 Hydrostatic Journal Bearings 90
4.3.3 Bearing Stiffness andThrottle 90
4.3.3.1 Constant Flow Pump 91
4.3.3.2 Capillary Throttle 91
4.3.3.3 Thin-Walled OrificeThrottle 92
4.4 Squeeze Bearings 92
4.4.1 Rectangular Plate Squeeze 93
4.4.2 Disc Squeeze 94
4.4.3 Journal Bearing Squeeze 94
4.5 Dynamic Bearings 96
4.5.1 Reynolds Equation of Dynamic JournalBearings 96
4.5.2 Simple Dynamic Bearing Calculation 98
4.5.2.1 A Sudden Load 98
4.5.2.2 Rotating Load 99
4.5.3 General Dynamic Bearings 100
4.5.3.1 Infinitely Narrow Bearings 100
4.5.3.2 Superimposition Method of Pressures101
4.5.3.3 Superimposition Method of CarryingLoads 101
4.6 Gas Lubrication Bearings 102
4.6.1 Basic Equations of Gas Lubrication102
4.6.2 Types of Gas Lubrication Bearings 103
4.7 Rolling Contact Bearings 106
4.7.1 Equivalent Radius R 107
4.7.2 Average Velocity U 107
4.7.3 Carrying Load PerWidthW/b 107
4.8 Gear Lubrication 108
4.8.1 Involute Gear Transmission 109
4.8.1.1 Equivalent Curvature Radius R 110
4.8.1.2 Average Velocity U 111
4.8.1.3 Load PerWidthW/b 112
4.8.2 Arc Gear Transmission EHL 112
4.9 Cam Lubrication 114
References 116
5 Special Fluid Medium Lubrication 118
5.1 Magnetic Hydrodynamic Lubrication 118
5.1.1 Composition and Classification ofMagnetic Fluids 118
5.1.2 Properties of Magnetic Fluids 119
5.1.2.1 Density of Magnetic Fluids 119
5.1.2.2 Viscosity of Magnetic Fluids 119
5.1.2.3 Magnetization Strength of MagneticFluids 120
5.1.2.4 Stability of Magnetic Fluids 120
5.1.3 Basic Equations of MagneticHydrodynamic Lubrication 121
5.1.4 Influence Factors on Magnetic EHL 123
5.2 Micro-Polar Hydrodynamic Lubrication124
5.2.1 Basic Equations of Micro-Polar FluidLubrication 124
5.2.1.1 Basic Equations of Micro-Polar FluidMechanics 124
5.2.1.2 Reynolds Equation of Micro-PolarFluid 125
5.2.2 Influence Factors on Micro-PolarFluid Lubrication 128
5.2.2.1 Influence of Load 128
5.2.2.2 Main Influence Parameters ofMicro-Polar Fluid 129
5.3 Liquid Crystal Lubrication 130
5.3.1 Types of Liquid Crystal 130
5.3.1.1 Tribological Properties ofLyotropic Liquid Crystal 131
5.3.1.2 Tribological PropertiesofThermotropic Liquid Crystal 131
5.3.2 Deformation Analysis of LiquidCrystal Lubrication 132
5.3.3 Friction Mechanism of Liquid Crystalas a Lubricant Additive 136
5.3.3.1 Tribological Mechanism of4-pentyl-4′-cyanobiphenyl 136
5.3.3.2 Tribological Mechanism ofCholesteryl Oleyl Carbonate 136
5.4 Electric Double Layer Effect inWaterLubrication 137
5.4.1 Electric Double Layer HydrodynamicLubrication Theory 138
5.4.1.1 Electric Double Layer Structure 138
5.4.1.2 Hydrodynamic Lubrication Theory ofElectric Double Layer 138
5.4.2 Influence of Electric Double Layer onLubrication Properties 142
5.4.2.1 Pressure Distribution 142
5.4.2.2 Load-Carrying Capacity 143
5.4.2.3 Friction Coefficient 144
5.4.2.4 An Example 144
References 145
6 Lubrication Transformation and NanoscaleThin Film Lubrication 147
6.1 Transformations of Lubrication States147
6.1.1 Thickness-Roughness Ratio ? 147
6.1.2 Transformation from HydrodynamicLubrication to EHL 148
6.1.3 Transformation from EHL to Thin FilmLubrication 149
6.2 Thin Film Lubrication 152
6.2.1 Phenomenon ofThin Film Lubrication153
6.2.2 Time Effect of Thin Film Lubrication154
6.2.3 Shear Strain Rate Effect onThin FilmLubrication 157
6.3 Analysis ofThin Film Lubrication 158
6.3.1 Difficulties in Numerical Analysis ofThin Film Lubrication 158
6.3.2 Tichy’s Thin Film Lubrication Models160
6.3.2.1 Direction Factor Model 160
6.3.2.2 Surface Layer Model 161
6.3.2.3 Porous Surface Layer Model 161
6.4 Nano-Gas Film Lubrication 161
6.4.1 Rarefied Gas Effect 162
6.4.2 Boundary Slip 163
6.4.2.1 Slip Flow 163
6.4.2.2 Slip Models 163
6.4.2.3 Boltzmann Equation for Rarefied GasLubrication 165
6.4.3 Reynolds Equation Considering theRarefied Gas Effect 165
6.4.4 Calculation of Magnetic Head/Disk ofUltraThin Gas Lubrication 166
6.4.4.1 Large Bearing Number Problem 167
6.4.4.2 Sudden Step Change Problem 167
6.4.4.3 Solution of Ultra-Thin GasLubrication of Multi-Track Magnetic Heads 167
References 169
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问