简介
作为数理统计学的一个专业分支,时间序列分析遵循数理统计学.的基本原理,都是利用观察信息估计总体的性质。但是由于时间的不可重复性,使得我们在任意一个时刻只能获得惟一的一个序列观察值,这种特殊的数据结构导致时间序列分析有它非常特殊的、自成体系的一套分析方法。目前,国内有关时间序列分析的著作和教材有很多,每本书都会有它预定的读者群体。本书的定位是大学本科生的时间序列分析入门教材。根据这个定位,本书语言通俗、案例丰富,理论联系实际紧密,习题难易程度适当,非常便于学生理解和练习。
目录
目录
第1章 时间序列分析简介
1.1 引言
1.2 时间序列的定义
1.3 时间序列分析方法
1.3.1 描述性时序分析
1.3.2 统计时序分析
1.4 时间序列分析软件
1.5 习题
1.6 上机指导
1.6.1 SAS操作界面
1.6.2 创建时间序列SAS数据集
1.6.3 时间序列数据集的处理
第2章 时间序列的预处理
2.1 平稳性检验
2.1.1 特征统计量
2.1.2 平稳时间序列的定义
2.1.3 平稳时间序列的统计性质
2.1.4 平稳时间序列的意义
2.1.5 平稳性的检验
2.2 纯随机性检验
2.2.1 纯随机序列的定义
2.2.2 白噪声序列的性质
2.2.3 纯随机性检验
2.3 习题
2.4 上机指导
2.4.1 绘制时序图
2.4.2 平稳性与纯随机性检验
第3章 平稳时间序列分析
3.1 方法性工具
3.1.1 差分运算
3.1.2 延迟算子
3.1.3 线性差分方程
3.2 ARMA模型的性质
3.2.1 AR模型
3.2.2 MA模型
3.2.3 ARMA模型
3.3 平稳序列建模
3.3.1 建模步骤
3.3.2 样本自相关系数与偏自相关系数
3.3.3 模型识别
3.3.4 参数估计
3.3.5 模型检验
3.3.6 模型优化
3.4 序列预测
3.4.1 线性预测函数
3.4.2 预测方差最小原则
3.4.3 线性最小方差预测的性质
3.4.4 修正预测
3.5 习题
3.6 上机指导
3.6.1 模型识别
3.6.2 参数估计
3.6.3 序列预测
第4章 非平稳序列的确定性分析
4.1 时间序列的分解
4.1.1 Wold分解定理
4.1.2 Cramer分解定理
4.2 确定性因素分解
4.3 趋势分析
4.3.1 趋势拟合法
4.3.2 平滑法
4.4 季节效应分析
4.5 综合分析
4.6 X-11过程
4.7 习题
4.8 上机指导
4.8.1 拟合线性趋势
4.8.2 拟合非线性趋势
4.8.3 X-11过程
第5章 非平稳序列的随机分析
5.1 差分运算
5.1.1 差分运算的实质
5.1.2 差分方式的选择
5.1.3 过差分
5.2 ARIMA模型
5.2.1 ARIMA模型的结构
5.2.2 ARIMA模型的性质
5.2.3 ARIMA模型建模
5.2.4 ARIMA模型预测
5.2.5 疏系数模型
5.2.6 季节模型
5.3 Auto-Regressive模型
5.3.1 模型结构
5.3.2 残差自相关检验
5.3.3 模型拟合
5.4 异方差的性质
5.4.1 异方差的影响
5.4.2 异方差的直观诊断
5.5 方差齐性变换
5.6 条件异方差模型
5.6.1 模型结构
5.6.2 模型拟合
5.7 习题
5.8 上机指导
5.8.1 拟合ARIMA模型
5.8.2 拟合Auto-Regressive模型
5.8.3 拟合GARCH模型
第六章 多元时间序列分析
6.1 平稳多元序列建模
6.2 虚假回归
6.3 单位根检验
6.3.1 DF检验
6.3.2 ADF检验
6.3.3 PP检验
6.4 协整
6.4.1 单整与协整
6.4.2 协整检验
6.5 误差修正模型
6.6 习题
6.7 上机指导
附录1
附录2
附录3
参考文献
_4x
第1章 时间序列分析简介
1.1 引言
1.2 时间序列的定义
1.3 时间序列分析方法
1.3.1 描述性时序分析
1.3.2 统计时序分析
1.4 时间序列分析软件
1.5 习题
1.6 上机指导
1.6.1 SAS操作界面
1.6.2 创建时间序列SAS数据集
1.6.3 时间序列数据集的处理
第2章 时间序列的预处理
2.1 平稳性检验
2.1.1 特征统计量
2.1.2 平稳时间序列的定义
2.1.3 平稳时间序列的统计性质
2.1.4 平稳时间序列的意义
2.1.5 平稳性的检验
2.2 纯随机性检验
2.2.1 纯随机序列的定义
2.2.2 白噪声序列的性质
2.2.3 纯随机性检验
2.3 习题
2.4 上机指导
2.4.1 绘制时序图
2.4.2 平稳性与纯随机性检验
第3章 平稳时间序列分析
3.1 方法性工具
3.1.1 差分运算
3.1.2 延迟算子
3.1.3 线性差分方程
3.2 ARMA模型的性质
3.2.1 AR模型
3.2.2 MA模型
3.2.3 ARMA模型
3.3 平稳序列建模
3.3.1 建模步骤
3.3.2 样本自相关系数与偏自相关系数
3.3.3 模型识别
3.3.4 参数估计
3.3.5 模型检验
3.3.6 模型优化
3.4 序列预测
3.4.1 线性预测函数
3.4.2 预测方差最小原则
3.4.3 线性最小方差预测的性质
3.4.4 修正预测
3.5 习题
3.6 上机指导
3.6.1 模型识别
3.6.2 参数估计
3.6.3 序列预测
第4章 非平稳序列的确定性分析
4.1 时间序列的分解
4.1.1 Wold分解定理
4.1.2 Cramer分解定理
4.2 确定性因素分解
4.3 趋势分析
4.3.1 趋势拟合法
4.3.2 平滑法
4.4 季节效应分析
4.5 综合分析
4.6 X-11过程
4.7 习题
4.8 上机指导
4.8.1 拟合线性趋势
4.8.2 拟合非线性趋势
4.8.3 X-11过程
第5章 非平稳序列的随机分析
5.1 差分运算
5.1.1 差分运算的实质
5.1.2 差分方式的选择
5.1.3 过差分
5.2 ARIMA模型
5.2.1 ARIMA模型的结构
5.2.2 ARIMA模型的性质
5.2.3 ARIMA模型建模
5.2.4 ARIMA模型预测
5.2.5 疏系数模型
5.2.6 季节模型
5.3 Auto-Regressive模型
5.3.1 模型结构
5.3.2 残差自相关检验
5.3.3 模型拟合
5.4 异方差的性质
5.4.1 异方差的影响
5.4.2 异方差的直观诊断
5.5 方差齐性变换
5.6 条件异方差模型
5.6.1 模型结构
5.6.2 模型拟合
5.7 习题
5.8 上机指导
5.8.1 拟合ARIMA模型
5.8.2 拟合Auto-Regressive模型
5.8.3 拟合GARCH模型
第六章 多元时间序列分析
6.1 平稳多元序列建模
6.2 虚假回归
6.3 单位根检验
6.3.1 DF检验
6.3.2 ADF检验
6.3.3 PP检验
6.4 协整
6.4.1 单整与协整
6.4.2 协整检验
6.5 误差修正模型
6.6 习题
6.7 上机指导
附录1
附录2
附录3
参考文献
_4x
应用时间序列分析
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×
亲爱的云图用户,
光盘内的文件都可以直接点击浏览哦
无需下载,在线查阅资料!