微信扫一扫,移动浏览光盘
简介
本书对分类数据分析的方法和模型,及其在社会科学研究中的应用做了全面介绍。它的一个目标是整合变换方法和潜在变量方法,这是两类不同但又相互补充的处理分类数据分析的传统方法。这也是*次在一本单册书中详细地介绍针对离散因变量、交叉分类和跟踪数据的模型与方法对于广大的社会科学研究者来说,意义重大,既可以使得他们能顺利使用合适的定类数据的统计方法,又可以让他们对统计后的结果作进一步的科学检验,使得研究能够更加深入下去。
目录
图目录/1
表目录/1
中文版序/1
前 言/1
第1章 绪论/1
1.1 为什么需要分类数据分析?/1
1.2 分类数据的两种哲学观点/6
1.3 一个发展史的注脚/8
1.4 本书特点/9
第2章 线性回归模型回顾/11
2.1 回归模型/11
2.2 再谈线性回归模型/17
2.3 分类变量和连续型因变量之间的区别/27
第3章 二分类数据模型/29
3.1 二分类数据介绍/29
3.2 变换的方法/30
3.3 Logit模型和Probit模型的论证/39
3.4 解释估计值/54
3.5 其他的概率模型/61
3.6 小结/62
第4章 列联表的对数线性模型/64
4.1 列联表/64
4.2 关联的测量/68
4.3 估计与拟合优度/73
4.4 二维表模型/79
4.5 次序变量模型/89
4.6 多维表的模型/97
第5章 二分类数据多层模型/110
5.1 导言/110
5.2 聚类二分类数据模型/113
5.3 追踪二分类数据模型/130
5.4 模型估计方法/136
5.5 项目响应模型/151
5.6 小结/159
第6章 关于事件发生的统计模型/161
6.1 导言/161
6.2 分析转换数据的框架/162
6.3 离散时间方法/163
6.4 连续时间模型/177
6.5 半参数比率模型/188
6.6 小结/211
第7章 次序因变量模型/213
7.1 导言/213
7.2 赋值方法/214
7.3 分组数据的Logit模型/216
7.4 次序Logit和Probit模型/220
7.5 小结/232
第8章 名义因变量模型/234
8.1 导言/234
8.2 多项Logit模型/235
8.3 标准多项Logit模型/237
8.4 分组数据的对数线性模型/242
8.5 潜在变量方法/245
8.6 条件Logit模型/246
8.7 设定问题/251
8.8 小结/258
附录A 回归的矩阵方法/259
A.1 导言/259
A.2 矩阵代数/259
附录B *似然估计/266
B.1 导言/266
B.2 基本原理/266
参考文献/285
索 引/295
译后记/314
分类数据分析的统计方法(第2版)
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×