简介
Summary:
Publisher Summary 1
Explores approaches to balancing the benefits and limitations offered by the different components, architectures, and assembly techniques currently used in the manufacture of analog integrated circuits. Written by experienced circuit designers, the 33 contributions discuss the conflicts and compromises that surround performance, filters, switched circuits, oscillators, data converters, and transceivers. Specific topics include floating gate circuits and systems, bandgap reference, frequency compensation, the compatibility of switched capacitor circuits with digital VLSI technology, analog power modeling for data converters and filters, CMOS mixer design, and standard and universal cellular neural network (CNN) cells. Annotation (c) Book News, Inc., Portland, OR (booknews.com)
Publisher Summary 2
As the frequency of communication systems increases and the dimensions of transistors are reduced, more and more stringent performance requirements are placed on analog circuits. This is a trend that is bound to continue for the foreseeable future and while it does, understanding performance trade-offs will constitute a vital part of the analog design process. It is the insight and intuition obtained from a fundamental understanding of performance conflicts and trade-offs, that ultimately provides the designer with the basic tools necessary for effective and creative analog design.
Trade-offs in Analog Circuit Design, which is devoted to the understanding of trade-offs in analog design, is quite unique in that it draws together fundamental material from, and identifies interrelationships within, a number of key analog circuits. The book covers ten subject areas: Design methodology, Technology, General Performance, Filters, Switched Circuits, Oscillators, Data Converters, Transceivers, Neural Processing, and Analog CAD. Within these subject areas it deals with a wide diversity of trade-offs ranging from frequency-dynamic range and power, gain-bandwidth, speed-dynamic range and phase noise, to tradeoffs in design for manufacture and IC layout. The book has by far transcended its original scope and has become both a designer's companion as well as a graduate textbook. An important feature of this book is that it promotes an intuitive approach to understanding analog circuits by explaining fundamental relationships and, in many cases, providing practical illustrative examples to demonstrate the inherent basic interrelationships and trade-offs.
Trade-offs in Analog Circuit Designdraws together 34 contributions from some of the world's most eminent analog circuits-and-systems designers to provide, for the first time, a comprehensive text devoted to a very important and timely approach to analog circuit design.
目录
Table Of Contents:
Foreword xxiii
List of Contributors xxix
Design Methodology
Intuitive Analog Circuit Design 1(6)
Chris Toumazou
Introduction 1(1)
The Analog Dilemma 2(5)
References 6(1)
Design for Manufacture 7(68)
Barrie Gilbert
Mass-Production of Microdevices 7(4)
Present Objectives 9(2)
Unique Challenges of Analog Design 11(3)
Analog is Newtonian 13(1)
Designing with Manufacture in Mind 14(8)
Conflicts and Compromises 15(1)
Coping with Sensitivities: DAPs, TAPs and STMs 16(6)
Robustness, Optimization and Trade-Offs 22(33)
Choice of Architecture 25(2)
Choice of Technology and Topology 27(5)
Remedies for Non-Robust Practices 32(2)
Turning the Tables on a Non-Robust Circuit: A Case Study 34(5)
Holistic optimization of the LNA 39(5)
A further example of biasing synergy 44(6)
Robustness in Voltage References 50(4)
The Cost of Robustness 54(1)
Toward Design Mastery 55(18)
First, the Finale 56(1)
Consider All Deliverables 57(1)
Design Compression 58(3)
Fundamentals before Finesse 61(1)
Re-Utilization of Proven Cells 62(1)
Try to Break Your Circuits 63(1)
Use Corner Modeling Judiciously 64(4)
Use Large-Signal Time-Domain Methods 68(1)
Use Back-Annotation of Parasitics 68(1)
Make Your Intentions Clear 69(1)
Dubious Value of Check Lists 70(2)
Use the ``Ten Things That Will Fail'' Test 72(1)
Conclusion 73(2)
General Performance
Trade-Offs in CMOS VLSI Circuits 75(40)
Andrey V. Mezhiba
Eby G. Friedman
Introduction 75(3)
Design Criteria 78(8)
Area 78(1)
Speed 79(1)
Power 79(1)
Design Productivity 80(1)
Testability 81(1)
Reliability 81(1)
Noise Tolerance 82(1)
Packaging 83(1)
General Considerations 83(1)
Power dissipation in CMOS VLSI circuits 84(1)
Technology scaling 85(1)
VLSI design methodologies 86(1)
Structural Level 86(3)
Parallel Architecture 87(1)
Pipelining 88(1)
Circuit Level 89(10)
Static versus Dynamic 90(1)
Transistor Sizing 91(4)
Tapered Buffers 95(4)
Physical Level 99(3)
Process Level 102(2)
Scaling 103(1)
Threshold Voltage 103(1)
Power Supply 103(1)
Improved Interconnect and Dielectric Materials 104(1)
Future Trends 104(11)
Glossary 107(1)
References 108(7)
Floating-gate Circuits and Systems 115(24)
Tor Sverre Lande
Introduction 115(1)
Device Physics 115(2)
Thin Dioxide 116(1)
Capacitive Connections 116(1)
Special Process Requirements 117(1)
Programming 117(2)
UV-conductance 118(1)
Fowler--Nordheim Tunneling 118(1)
Hot Carrier Injection 119(1)
Circuit Elements 119(9)
Programming Circuits 120(1)
Inter-poly tunneling 120(1)
Example: Floating-gate on-chip knobs 121(1)
Inter-poly UV-programming 121(1)
MOS-transistor UV-conductance 122(1)
Example: MOS transistor threshold tuning 123(1)
Combined programming techniques 124(2)
Example: Single transistor synapse 126(1)
High-voltage drivers 127(1)
FGMOS Circuits and Systems 128(6)
Autozero Floating-Gate Amplifier 128(2)
Low-power/Low-voltage Rail-to-Rail Circuits Using FGUVMOS 130(1)
Digital FGUVMOS circuits 130(1)
Low-voltage rail-to-rail FGUVMOS amplifier 130(2)
Adaptive Retina 132(2)
Other Circuits 134(1)
Retention 134(1)
Concluding Remarks 134(5)
References 135(4)
Bandgap Reference Design 139(30)
Arie van Staveren
Michiel H. L. Kouwenhoven
Wouter A. Serdijn
Chris J. M. Verhoeven
Introduction 139(1)
The Basic Function 140(1)
Temperature Behavior of VBE 140(1)
General Temperature Compensation 141(1)
A Linear Combination of Base-Emitter Voltages 142(4)
First-Order Compensation 143(1)
Second-Order Compensation 144(2)
The Key Parameters 146(1)
Temperature-Dependent Resistors 147(1)
Noise 148(7)
Noise of the Idealized Bandgap Reference 150(1)
Noise of a First-Order Compensated Reference 151(1)
Noise of a Second-Order Compensated Reference 152(1)
Power-Supply Rejection 153(2)
Simplified Structures 155(2)
First-Order Compensated Reference 155(1)
Second-Order Compensated Reference 156(1)
Design Example 157(6)
First-Order Compensated Bandgap Reference 157(2)
Second-Order Compensated Bandgap Reference 159(4)
Conclusions 163(6)
References 164(5)
Generalized Feedback Circuit Analysis 169(38)
Scott K. Burgess
John Choma, Jr.
Introduction 169(2)
Fundamental Properties of Feedback Loops 171(11)
Open Loop System Architecture and Parameters 171(2)
Closed Loop System Parameters 173(3)
Phase Margin 176(3)
Settling Time 179(3)
Circuit Partitioning 182(25)
Generalized Circuit Transfer Function 183(6)
Generalized Driving Point I/O Impedances 189(2)
Special Controlling/Controlled Port Cases 191(1)
Controlling feedback variable is the circuit output variable 192(1)
Global feedback 193(2)
Controlling feedback variable is the branch variable of the controlled port 195(9)
References 204(3)
Analog Amplifiers Architectures: Gain Bandwidth Trade-Offs 207(20)
Alison J. Burdett
Chris Toumazou
Introduction 207(1)
Early Concepts in Amplifier Theory 208(3)
The Ideal Amplifier 208(1)
Reciprocity and Adjoint Networks 209(1)
The Ideal Amplifier Set 210(1)
Practical Amplifier Implementations 211(6)
Voltage Op-Amps 211(2)
Breaking the Gain--Bandwidth Conflict 213(1)
Current-feedback op-amps 213(1)
Follower-based amplifiers 214(1)
Current-conveyor amplifiers 214(1)
Producing a Controlled Output Current 215(2)
Closed-Loop Amplifier Performance 217(5)
Ideal Amplifiers 217(1)
Real Amplifiers 218(4)
Source and Load Isolation 222(2)
Conclusions 224(3)
References 225(2)
Noise, Gain and Bandwidth in Analog Design 227(30)
Robert G. Meyer
Gain--Bandwidth Concepts 227(7)
Gain--Bandwidth Shrinkage 230(2)
Gain--Bandwidth Trade-Offs Using Inductors 232(2)
Device Noise Representation 234(6)
Effect of Inductors on Noise Performance 238(2)
Trade-Offs in Noise and Gain--Bandwidth 240(17)
Methods of Trading Gain for Bandwidth and the Associated Noise Performance Implications [8] 240(3)
The Use of Single-Stage Feedback for the Noise-Gain-Bandwidth Trade-Off 243(5)
Use of Multi-Stage Feedback to Trade-Off Gain, Bandwidth and Noise Performance 248(7)
References 255(2)
Frequency Compensation 257(26)
Arie van Staveren
Michiel H. L. Kouwenhoven
Wouter A. Serdijn
Chris J. M. Verhoeven
Introduction 257(1)
Design Objective 258(2)
The Asymptotic-Gain Model 260(1)
The Maximum Attainable Bandwidth 260(5)
The LP Product 261(2)
The Group of Dominant Poles 263(2)
Pole Placement 265(12)
Resistive Broadbanding 268(2)
Pole--Zero Cancelation 270(2)
Pole Splitting 272(3)
Phantom Zeros 275(2)
Order of Preference 277(1)
Adding Second-Order Effects 277(1)
Example Design 278(3)
Conclusion 281(2)
References 281(2)
Frequency-Dynamic Range-Power 283(32)
Eric A. Vittoz
Yannis P. Tsividis
Introduction 283(1)
Fundamental Limits of Trade-Off 284(15)
Absolute Lower Boundary 284(2)
Filters 286(2)
Oscillators 288(4)
Voltage-to-Current and Current-to-Voltage Conversion 292(3)
Current Amplifiers 295(2)
Voltage Amplifiers 297(2)
Process-Dependent Limitations 299(4)
Parasitic Capacitors 299(1)
Additional Sources of Noise 300(1)
Mismatch of Components 301(1)
Charge Injection 301(1)
Non-Optimum Supply Voltage 302(1)
Companding and Dynamic Biasing 303(7)
Syllabic Companding 303(3)
Dynamic Biasing 306(2)
Performance in the Presence of blockers 308(1)
Instantaneous Companding 309(1)
Conclusion 310(5)
References 311(4)
Filters
Trade-Offs in Sensitivity, Component Spread and Component Tolerance in Active Filter Design 315(26)
George Moschytz
Introduction 315(1)
Basics of Sensitivity Theory 316(3)
The Component Sensitivity of Active Filters 319(6)
Filter Selectivity, Pole Q and Sensitivity 325(3)
Maximizing the Selectivity of RC Networks 328(4)
Some Design Examples 332(5)
Sensitivity and Noise 337(2)
Summary and Conclusions 339(2)
References 339(2)
Continuous-Time Filters 341(14)
Robert Fox
Introduction 341(1)
Filter-Design Trade-Offs: Selectivity, Filter Order, Pole Q and Transient Response 341(1)
Circuit Trade-Offs 342(2)
Linearity vs Tuneability 342(1)
Passive Components 342(1)
Tuneable Resistance Using MOSFETs: The MOSFET-C Approach 343(1)
The Transconductance-C (Gm-C) Approach 344(3)
Triode-Region Transconductors 345(1)
Saturation-Region Transconductors 346(1)
MOSFETs Used for Degeneration 346(1)
BJT-Based Transconductors 347(1)
Offset Differential Pairs 347(1)
Dynamic Range 347(2)
Differential Operation 349(1)
Log-Domain Filtering 349(1)
Transconductor Frequency-Response Trade-Offs 350(1)
Tuning Trade-Offs 351(2)
No tuning 352(1)
Off-chip tuning 352(1)
One-time post-fabrication tuning 352(1)
Automatic tuning 352(1)
Simulation Issues 353(2)
References 353(2)
Insights in Log-Domain Filtering 355(52)
Emmanuel M. Drakakis
Alison J. Burdett
General 355(5)
Synthesis and Design of Log-Domain Filters 360(14)
Impact of BJT Non-Idealities upon Log-Domain Transfer Functions: The Lowpass Biquad Example 374(6)
Floating Capacitor-Based Realization of Finite Transmission Zeros in Log-Domain: The Impact upon Linearity 380(3)
Effect of Modulation Index upon Internal Log-Domain Current Bandwidth 383(7)
Distortion Properties of Log-Domain Circuits: The Lossy Integrator Case 390(3)
Noise Properties of Log-Domain Circuits: The Lossy Integrator Case 393(8)
Summary 401(6)
References 401(6)
Switched Circuits
Trade-offs in the Design of CMOS Comparators 407(36)
A. Rodriguez-Vazquez
M. Delgado-Restituto
R. Dominguez-Castro
F. Medeiro
J.M. de la Rosa
Introduction 407(1)
Overview of Basic CMOS Voltage Comparator Architectures 408(15)
Single-Step Voltage Comparators 409(3)
Multistep Comparators 412(5)
Regenerative Positive-Feedback Comparators 417(4)
Pre-Amplified Regenerative Comparators 421(2)
Architectural Speed vs Resolution Trade-Offs 423(6)
Single-Step Comparators 423(2)
Multistep Comparators 425(1)
Regenerative Comparators 426(3)
On the impact of the offset 429(3)
Offset-Compensated Comparators 432(6)
Offset-Compensation Through Dynamic Biasing 433(2)
Offset Compensation in Multistep Comparators 435(1)
Residual Offset and Gain Degradation in Self-Biased Comparators 436(1)
Transient Behavior and Dynamic Resolution in Self-Biased Comparators 437(1)
Appendix. Simplified MOST Model 438(5)
References 439(4)
Switched-Capacitor Circuits 443(18)
Andrea Baschirotto
Introduction 443(2)
Trade-Off due to Scaled CMOS Technology 445(6)
Reduction of the MOS Output Impedance (ro) 446(1)
Increase of the Flicker Noise 447(1)
Increase of the MOS Leakage Current 447(1)
Reduction of the Supply Voltage 448(3)
Trade-Off in High-Frequency SC Circuits 451(5)
Trade-Off Between an IIR and a FIR Frequency Response 452(1)
Trade-Off in SC Parallel Solutions 453(1)
Trade-Off in the Frequency Choice 454(2)
Conclusions 456(5)
Acknowledgments 456(1)
References 457(4)
Compatibility of SC Technique with Digital VLSI Technology 461(30)
Kritsapon Leelavattananon
Chris Toumazou
Introduction 461(1)
Monolithic MOS Capacitors Available in Digital VLSI Processes 461(5)
Polysilicon-over-Polysilicon (or Double-Poly) Structure 462(1)
Polysilicon-over-Diffusion Structure 462(1)
Metal-over-Metal Structure 463(1)
Metal-over-Polysilicon Structure 464(1)
MOSFET Gate Structure 464(2)
Operational Amplifiers in Standard VLSI Processes 466(8)
Operational Amplifier Topologies 466(1)
Single-stage (telescopic) amplifier 466(1)
Folded cascode amplifier 466(1)
Gain-boosting amplifier 467(1)
Two-stage amplifier 468(1)
Frequency Compensation 469(1)
Miller compensation 469(1)
Miller compensation incorporating source follower 470(1)
Cascode Miller Compensation 471(1)
Common-Mode Feedback 472(2)
Charge-Domain Processing 474(3)
Linearity Enhanced Composite Capacitor Branches 477(8)
Series Compensation Capacitor Branch 480(2)
Parallel Compensation Capacitor Branch 482(1)
Balanced Compensation Capacitor Branch 483(2)
Practical Considerations 485(2)
Bias Voltage Mismatch 485(1)
Capacitor Mismatch 485(1)
Parasitic Capacitances 486(1)
Summary 487(4)
References 488(3)
Switched-Capacitors or Switched-Currents
Which Will Succeed? 491(26)
John Hughes
Apisak Worapishet
Introduction 491(1)
Test Vehicles and Performance Criteria 492(2)
Clock Frequency 494(5)
Switched-Capacitor Settling 495(2)
Switched-Currents Class A Settling 497(1)
Switched-Currents Class AB Settling 498(1)
Power Consumption 499(1)
Switched-Capacitors and Switched-Currents Class A Power Consumption 499(1)
Switched-Currents Class AB Power Consumption 499(1)
Signal-to-Noise Ratio 499(10)
Switched-Capacitors Noise 500(3)
Switched-Currents Class A Noise 503(3)
Switched-Current Class AB Noise 506(1)
Comparison of Signal-to-Noise Ratios 507(2)
Figure-of-Merit 509(1)
Switched-Capacitors 509(1)
Switched-Currents Class A 510(1)
Switched-Currents Class AB 510(1)
Comparison of Figures-of-Merit 510(4)
Conclusions 514(3)
References 514(3)
Oscillators
Design of Integrated LC VCOs 517(34)
Donhee Ham
Introduction 517(1)
Graphical Nonlinear Programming 518(1)
LC VCO Design Constraints and an Objective Function 519(7)
Design Constraints 522(1)
Phase Noise as an Objective Function 522(1)
Phase Noise Approximation 523(2)
Independent Design Variables 525(1)
LC VCO Optimization via GNP 526(11)
Example of Design Constraints 527(1)
GNP with a Fixed Inductor 527(3)
GNP with a Fixed Inductance Value 530(3)
Inductance and Current Selection 533(2)
Summary of the Optimization Process 535(1)
Remarks on Final Adjustment and Robust Design 536(1)
Discussion on LC VCO Optimization 537(3)
Simulation 540(1)
Experimental Results 541(4)
Conclusion 545(6)
Acknowledgments 546(1)
References 546(5)
Trade-Offs in Oscillator Phase Noise 551(40)
Ali Hajimiri
Motivation 551(1)
Measures of Frequency Instability 551(6)
Phase Noise 554(2)
Timing Jitter 556(1)
Phase Noise Modeling 557(8)
Up-Conversion of 1/f Noise 562(1)
Time-Varying Noise Sources 563(2)
Phase Noise Trade-Offs in LC Oscillators 565(9)
Tank Voltage Amplitude 565(5)
Noise Sources 570(1)
Stationary noise approximation 570(2)
Cyclostationary noise sources 572(1)
Design Implications 573(1)
Phase Noise Trade-Offs for Ring Oscillators 574(17)
The Impulse Sensitivity Function for Ring Oscillators 574(5)
Expressions for Phase Noise in Ring Oscillators 579(3)
Substrate and Supply Noise 582(2)
Design Trade-Offs in Ring Oscillators 584(1)
References 585(6)
Data Converters
Systematic Design of High-Performance Data Converters 591(22)
Georges Gielen
Jan Vandenbussche
Geert van der Plas
Walter Daems
Anne Van den Bosch
Michiel Steyaert
Willy Sansen
Introduction 591(1)
Systematic Design Flow for D/A Converters 592(2)
Current-Steering D/A Converter Architecture 594(3)
Generic Behavioral Modeling for the Top-Down Phase 597(2)
Sizing Synthesis of the D/A Converter 599(4)
Architectural-Level Synthesis 600(1)
Static performance 600(1)
Dynamic performance 601(1)
Circuit-Level Synthesis 602(1)
Static performance 602(1)
Dynamic performance 603(1)
Full Decoder Synthesis 603(1)
Clock Driver Synthesis 603(1)
Layout Synthesis of the D/A Converter 603(3)
Floorplanning 604(1)
Circuit and Module Layout Generation 604(1)
Current-source array layout generation 604(1)
Swatch array layout generation 605(1)
Full decoder standard cell place and route 605(1)
Converter Layout Assembly 606(1)
Extracted Behavioral Model for Bottom-Up Verification 606(1)
Experimental Results 607(3)
Conclusions 610(3)
Acknowledgments 610(1)
References 610(3)
Analog Power Modeling for Data Converters and Filters 613(18)
Georges Gielen
Erik Lauwers
Introduction 613(1)
Approaches for Analog Power Estimators 614(2)
A Power Estimation Model for High-Speed Nyquist-Rate ADCs 616(4)
The Power Estimator Derivation 616(3)
Results of the Power Estimator 619(1)
A Power Estimation Model for Analog Continuous-Time Filters 620(7)
The ACTIF Approach 620(1)
Description of the Filter Synthesis Part 621(3)
OTA Behavioral Modeling and Optimization for Minimal Power Consumption 624(1)
Modeling of the transconductances 624(1)
The distortion model 625(1)
Optimization 626(1)
Experimental Results 627(1)
Conclusions 627(4)
Acknowledgment 628(1)
References 628(3)
Speed vs. dynamic range Trade-Off in Oversampling Data Converters 631(34)
Richard Schreier
Jesper Steensgaard
Gabor C. Temes
Introduction 631(1)
Oversampling Data Converters 632(12)
Quantization Error 632(1)
Feedback Quantizers 633(3)
Oversampling D/A Converters 636(3)
Oversampling A/D Converters 639(1)
Multibit Quantization 640(4)
Mismatch Shaping 644(9)
Element Rotation 644(1)
Generalized Mismatch-Shaping 645(4)
Other Mismatch-Shaping Architectures 649(1)
Performance Comparison 650(3)
Reconstructing a Sampled Signal 653(12)
The Interpolation Process 654(1)
An interpolation system example 654(2)
Fundamental Architectures for Practical Implementations 656(1)
Single-bit delta-sigma modulation 657(1)
Multibit delta-sigma modulation 657(1)
High-resolution oversampled D/A converters 658(1)
High-Resolution Mismatch-Shaping D/A Converters 659(1)
A fresh look on mismatch shaping 659(1)
Practical implementations 660(2)
References 662(3)
Transceivers
Power-Conscious Design of Wireless Circuits and Systems 665(32)
Asad A. Abidi
Introduction 665(2)
Lowering Power across the Hierarchy 667(1)
Power Conscious RF and Baseband Circuits 668(29)
Dynamic Range and Power Consumption 668(2)
Lowering Power in Tuned Circuits 670(1)
Importance of Passives Quality in Resonant Circuits 671(2)
Low Noise Amplifiers 673(5)
Oscillators 678(3)
Mixers 681(4)
Frequency Dividers 685(1)
Baseband Circuits 686(3)
On-Chip Inductors 689(2)
Examples of Low Power Radio Implementations 691(1)
Conclusions: Circuits 692(1)
References 692(5)
Photoreceiver Design 697(26)
Mark Forbes
Introduction 697(1)
Review of Receiver Structure 698(2)
Front-End Small-Signal Performance 700(7)
Small-Signal Analysis 700(2)
Speed/Sensitivity Trade-Off 702(4)
Calculations, for example, parameters 706(1)
Noise Limits 707(2)
Post-Amplifier Performance 709(3)
Front-End and Post-Amplifier Combined Trade-Off 712(2)
Mismatch 714(4)
Conclusions 718(5)
Acknowledgments 718(1)
References 719(4)
Analog Front-End Design Considerations for DSL 723(24)
Nianxiong Nick Tan
Introduction 723(2)
System Considerations 725(3)
Digital vs Analog Process 725(1)
Active vs Passive Filters 726(2)
Data Converter Requirements for DSL 728(12)
Optimum Data Converters for ADSL 732(1)
Optimum ADCs for ADSL 732(2)
Optimum ADC for ADSL-CO 734(1)
Optimum ADC for ADSL-CP 735(1)
Optimum DACs 735(2)
Optimum DAC for ADSL-CO 737(1)
Optimum DAC for ADSL-CP 737(1)
Function of Filtering 738(2)
Circuit Considerations 740(4)
Oversampling vs Nyquist Data Converters 740(3)
SI vs SC 743(1)
Sampled-Data vs Continuous-Time Filters 743(1)
Gm-C vs RC filters 744(1)
Conclusions 744(3)
Acknowledgments 745(1)
References 745(2)
Low Noise Design 747(40)
Michiel H. L. Kouwenhoven
Arie van Staveren
Wouter A. Serdijn
Chris J. M. Verhoeven
Introduction 747(1)
Noise Analysis Tools 747(4)
Equivalent Noise Source 748(1)
Transform-I: Voltage Source Shift 749(1)
Transform-II: Current Source Shift 749(1)
Transform-III: Norton--Thevenin Transform 749(1)
Transform-IV: Shift through Twoports 750(1)
Low-Noise Amplifier Design 751(11)
Design of the Feedback Network 752(1)
Noise production by the feedback network 753(1)
Magnification of nullor noise 754(1)
Distortion increment and bandwidth reduction 755(1)
Design of the Active Part for Low Noise 756(1)
Noise Optimizations 757(1)
Noise matching to the source 757(2)
Optimization of the bias current 759(1)
Connecting stages in series/parallel 760(1)
Summary of optimizations 761(1)
Low Noise Harmonic Resonator Oscillator Design 762(10)
General Structure of a Resonator Oscillator 762(1)
Noise Contribution of the Resonator 763(1)
Design of the Undamping Circuit for Low Noise 764(1)
Principle implementation of the undamping circuit 765(1)
Amplitude control 765(1)
Noise performance 766(1)
Driving the oscillator load 766(1)
Noise Matching of the Resonator and Undamping Circuit: Tapping 767(2)
Power Matching 769(1)
Coupled Resonator Oscillators 770(2)
Low-Noise Relaxation Oscillator Design 772(15)
Phase Noise in Relaxation Oscillators 773(1)
Simple phase noise model 773(1)
Influence of the memory on the oscillator phase noise 774(2)
Influence of comparators on the oscillator phase noise 776(1)
Improvement of the Noise Behavior by Alternative Topologies 777(1)
Relaxation oscillators with memory bypass 778(2)
Coupled relaxation oscillators 780(4)
References 784(3)
Trade-Offs in CMOS Mixer Design 787(34)
Ganesh Kathiresan
Chris Toumazou
Introduction 787(2)
The RF Receiver Re-Visited 788(1)
Some Mixer Basics 789(3)
Mixers vs Multipliers 789(2)
Mixers: Nonlinear or Linear-Time-Variant? 791(1)
Mixer Figures of Merit 792(8)
Conversion Gain and Bandwidth 793(1)
1 dB Compression Point 794(2)
Third-Order Intercept Point 796(1)
Noise Figure 797(2)
Port-to-Port Isolation 799(1)
Common Mode Rejection, Power Supply, etc 799(1)
Mixer Architectures and Trade-Offs 800(17)
Single Balanced Differential Pair Mixer 800(3)
Double-Balanced Mixer and Its Conversion Gain 803(2)
Supply Voltage 805(1)
Active loads 805(1)
Inductive current source 805(1)
Two stack source coupled mixer 806(1)
Bulk driven topologies 807(2)
Linearity 809(1)
Source degeneration 809(2)
Switched MOSFET degeneration 811(1)
LO Feedthrough 812(1)
Mixer Noise 813(1)
Noise due to the load 814(1)
Noise due to the input transconductor 814(1)
Noise due to the switches 815(2)
Conclusion 817(4)
References 817(4)
A High-performance Dynamic-logic Phase-Frequency Detector 821(22)
Shenggao Li
Mohammed Ismail
Introduction 821(1)
Phase Detectors Review 822(5)
Multiplier 822(1)
Exclusive-OR Gate 823(2)
JK-Flipflop 825(1)
Tri-State Phase Detector 825(2)
Design Issues in Phase-Frequency Detectors 827(4)
Dead-Zone 827(2)
Blind-Zone 829(2)
Dynamic Logic Phase-Frequency Detectors 831(4)
A Novel Dynamic-Logic Phase-Frequency Detector 835(7)
Circuit Operation 836(1)
Performance Evaluation 837(5)
Conclusion 842(1)
References 842(1)
Trade-Offs in Power Amplifiers 843(40)
Chung Kei Thomas Chan
Steve Hung-Lung Tu
Chris Toumazou
Introduction 843(2)
Classification of Power Amplifiers 845(8)
Current-Source Power Amplifiers 845(3)
Switch-Mode Power Amplifiers 848(1)
Class D power amplifier 848(1)
Class E power amplifier 849(1)
Class F power amplifier 850(2)
Bandwidth Efficiency, Power Efficiency and Linearity 852(1)
Effect of Loaded Q-Factor on Class E Power Amplifiers 853(8)
Circuit Analysis 853(4)
Power Efficiency 857(1)
Circuit Simulation and Discussion 858(3)
Class E Power Amplifiers with Nonlinear Shunt Capacitance 861(17)
Numerical Computation of Optimum Component Values 863(1)
Basic equations 863(2)
Optimum operation (Alinikula's method [16]) 865(4)
Fourier analysis 869(1)
Normalized power capability 869(1)
Generalized Numerical Method 870(2)
Design example 872(1)
Small linear shunt capacitor 872(6)
Conclusion 878(5)
References 880(3)
Neural Processing
Trade-Offs in Standard and Universal CNN Cells 883(40)
Martin Hanggi
Radu Dogaru
Leon O. Chua
Introduction 883(1)
The Standard CNN 884(3)
Circuit Implementation of CNNs 886(1)
Standard CNN Cells: Robustness vs Processing Speed 887(15)
Reliability of a Standard CNN 887(1)
Introduction 887(1)
Absolute and relative robustness 888(1)
The Robustness of a CNN template set 888(2)
Template scaling 890(1)
Template design 890(2)
The Settling Time of a Standard CNN 892(1)
Introduction 892(1)
The exact approach for uncoupled CNNS 893(1)
Analysis of Propagation-Type Templates 893(1)
Introduction 893(1)
Examples of propagation-type templates 894(3)
Robust CNN Algorithms for High-Connectivity Tasks 897(1)
Template classes 898(2)
One-step vs algorithmic processing 900(1)
Concluding Remarks 901(1)
Universal CNN Cells and their Trade-Offs 902(21)
Preliminaries 902(2)
Pyramidal CNN cells 904(1)
Architecture 904(1)
Trade-offs 905(1)
Canonical Piecewise-linear CNN cells 906(1)
Characterization and architecture 906(1)
Trade-offs 907(1)
Example 908(1)
The Multi-Nested Universal CNN Cell 909(1)
Architecture and characterization 909(1)
Trade-offs 910(4)
An RTD-Based Multi-Nested Universal CNN Cell Circuit 914(3)
Concluding Remarks 917(1)
References 918(5)
Analog CAD
Top-Down Design Methodology For Analog Circuits Using Matlab and Simulink 923(30)
Naveen Chandra
Gordon W. Roberts
Introduction 923(2)
Design Methodology Motivation 925(2)
Optimization Procedure 926(1)
Switched Capacitor Delta-Sigma Design Procedure 927(2)
Switched Sampled Capacitor (kT/C) Noise 928(1)
OTA Parameters 929(1)
Modeling of ΔΣ Modulators in Simulink 929(9)
Sampled Capacitor (kT/C) Noise 930(1)
OTA Noise 931(1)
Switched Capacitor Integrator Non-Idealities 932(6)
Optimization Setup 938(7)
Implementation in Matlab 941(2)
Initial Conditions 943(2)
Additional Factors 945(1)
Summary of Simulation Results 945(1)
A Fully Coded ΔΣ Modulator Design Example 946(4)
Conclusion 950(3)
References 951(2)
Techniques and Applications of Symbolic Analysis for Analog Integrated Circuits 953(32)
Georges Gielen
Introduction 953(1)
What is Symbolic Analysis? 953(5)
Definition of Symbolic Analysis 953(3)
Basic Methodology of Symbolic Analysis 956(2)
Applications of Symbolic Analysis 958(7)
Insight into Circuit Behavior 958(2)
Analytic Model Generation for Automated Analog Circuit Sizing 960(1)
Interactive Circuit Exploration 961(1)
Repetitive Formula Evaluation 961(1)
Analog Fault Diagnosis 962(1)
Behavioral Model Generation 963(1)
Formal Verification 964(1)
Summary of Applications 965(1)
Present Capabilities and Limitations of Symbolic Analysis 965(11)
Symbolic Approximation 966(2)
Improving Computational Efficiency 968(1)
Simplification During Generation 969(2)
Simplification Before Generation 971(1)
Hierarchical Decomposition 971(3)
Symbolic Pole-Zero Analysis 974(1)
Symbolic Distortion Analysis 974(2)
Open Research Topics 976(1)
Comparison of Symbolic Simulators 976(1)
Conclusions 977(8)
Acknowledgments 979(1)
References 979(6)
Topics in IC Layout for Manufacture 985(48)
Barrie Gilbert
Layout: The Crucial Next Step 985(11)
An Architectural Analogy 988(1)
IC Layout: A Matter of ``Drafting''? 989(3)
A Shared Undertaking 992(1)
What Inputs should the Layouteer Expect? 993(3)
Interconnects 996(10)
Metal Limitations 998(2)
Other Metalization Trade-Offs 1000(6)
Substrates and the Myth of ``Ground'' 1006(4)
Device-Level Substrate Nodes 1009(1)
Starting an Analog Layout 1010(2)
Device Matching 1012(12)
The ``Biggest-of-All'' Layout Trade-Off 1015(1)
Matching Rules for Specific Components 1016(2)
Capacitor Matching 1018(2)
Circuit/Layout Synergy 1020(4)
Layout of Silicon-on-Insulator Processes 1024(5)
Consequences of High Thermal Resistance 1028(1)
Reflections on Superintegrated Layout 1029(4)
Index 1033
Foreword xxiii
List of Contributors xxix
Design Methodology
Intuitive Analog Circuit Design 1(6)
Chris Toumazou
Introduction 1(1)
The Analog Dilemma 2(5)
References 6(1)
Design for Manufacture 7(68)
Barrie Gilbert
Mass-Production of Microdevices 7(4)
Present Objectives 9(2)
Unique Challenges of Analog Design 11(3)
Analog is Newtonian 13(1)
Designing with Manufacture in Mind 14(8)
Conflicts and Compromises 15(1)
Coping with Sensitivities: DAPs, TAPs and STMs 16(6)
Robustness, Optimization and Trade-Offs 22(33)
Choice of Architecture 25(2)
Choice of Technology and Topology 27(5)
Remedies for Non-Robust Practices 32(2)
Turning the Tables on a Non-Robust Circuit: A Case Study 34(5)
Holistic optimization of the LNA 39(5)
A further example of biasing synergy 44(6)
Robustness in Voltage References 50(4)
The Cost of Robustness 54(1)
Toward Design Mastery 55(18)
First, the Finale 56(1)
Consider All Deliverables 57(1)
Design Compression 58(3)
Fundamentals before Finesse 61(1)
Re-Utilization of Proven Cells 62(1)
Try to Break Your Circuits 63(1)
Use Corner Modeling Judiciously 64(4)
Use Large-Signal Time-Domain Methods 68(1)
Use Back-Annotation of Parasitics 68(1)
Make Your Intentions Clear 69(1)
Dubious Value of Check Lists 70(2)
Use the ``Ten Things That Will Fail'' Test 72(1)
Conclusion 73(2)
General Performance
Trade-Offs in CMOS VLSI Circuits 75(40)
Andrey V. Mezhiba
Eby G. Friedman
Introduction 75(3)
Design Criteria 78(8)
Area 78(1)
Speed 79(1)
Power 79(1)
Design Productivity 80(1)
Testability 81(1)
Reliability 81(1)
Noise Tolerance 82(1)
Packaging 83(1)
General Considerations 83(1)
Power dissipation in CMOS VLSI circuits 84(1)
Technology scaling 85(1)
VLSI design methodologies 86(1)
Structural Level 86(3)
Parallel Architecture 87(1)
Pipelining 88(1)
Circuit Level 89(10)
Static versus Dynamic 90(1)
Transistor Sizing 91(4)
Tapered Buffers 95(4)
Physical Level 99(3)
Process Level 102(2)
Scaling 103(1)
Threshold Voltage 103(1)
Power Supply 103(1)
Improved Interconnect and Dielectric Materials 104(1)
Future Trends 104(11)
Glossary 107(1)
References 108(7)
Floating-gate Circuits and Systems 115(24)
Tor Sverre Lande
Introduction 115(1)
Device Physics 115(2)
Thin Dioxide 116(1)
Capacitive Connections 116(1)
Special Process Requirements 117(1)
Programming 117(2)
UV-conductance 118(1)
Fowler--Nordheim Tunneling 118(1)
Hot Carrier Injection 119(1)
Circuit Elements 119(9)
Programming Circuits 120(1)
Inter-poly tunneling 120(1)
Example: Floating-gate on-chip knobs 121(1)
Inter-poly UV-programming 121(1)
MOS-transistor UV-conductance 122(1)
Example: MOS transistor threshold tuning 123(1)
Combined programming techniques 124(2)
Example: Single transistor synapse 126(1)
High-voltage drivers 127(1)
FGMOS Circuits and Systems 128(6)
Autozero Floating-Gate Amplifier 128(2)
Low-power/Low-voltage Rail-to-Rail Circuits Using FGUVMOS 130(1)
Digital FGUVMOS circuits 130(1)
Low-voltage rail-to-rail FGUVMOS amplifier 130(2)
Adaptive Retina 132(2)
Other Circuits 134(1)
Retention 134(1)
Concluding Remarks 134(5)
References 135(4)
Bandgap Reference Design 139(30)
Arie van Staveren
Michiel H. L. Kouwenhoven
Wouter A. Serdijn
Chris J. M. Verhoeven
Introduction 139(1)
The Basic Function 140(1)
Temperature Behavior of VBE 140(1)
General Temperature Compensation 141(1)
A Linear Combination of Base-Emitter Voltages 142(4)
First-Order Compensation 143(1)
Second-Order Compensation 144(2)
The Key Parameters 146(1)
Temperature-Dependent Resistors 147(1)
Noise 148(7)
Noise of the Idealized Bandgap Reference 150(1)
Noise of a First-Order Compensated Reference 151(1)
Noise of a Second-Order Compensated Reference 152(1)
Power-Supply Rejection 153(2)
Simplified Structures 155(2)
First-Order Compensated Reference 155(1)
Second-Order Compensated Reference 156(1)
Design Example 157(6)
First-Order Compensated Bandgap Reference 157(2)
Second-Order Compensated Bandgap Reference 159(4)
Conclusions 163(6)
References 164(5)
Generalized Feedback Circuit Analysis 169(38)
Scott K. Burgess
John Choma, Jr.
Introduction 169(2)
Fundamental Properties of Feedback Loops 171(11)
Open Loop System Architecture and Parameters 171(2)
Closed Loop System Parameters 173(3)
Phase Margin 176(3)
Settling Time 179(3)
Circuit Partitioning 182(25)
Generalized Circuit Transfer Function 183(6)
Generalized Driving Point I/O Impedances 189(2)
Special Controlling/Controlled Port Cases 191(1)
Controlling feedback variable is the circuit output variable 192(1)
Global feedback 193(2)
Controlling feedback variable is the branch variable of the controlled port 195(9)
References 204(3)
Analog Amplifiers Architectures: Gain Bandwidth Trade-Offs 207(20)
Alison J. Burdett
Chris Toumazou
Introduction 207(1)
Early Concepts in Amplifier Theory 208(3)
The Ideal Amplifier 208(1)
Reciprocity and Adjoint Networks 209(1)
The Ideal Amplifier Set 210(1)
Practical Amplifier Implementations 211(6)
Voltage Op-Amps 211(2)
Breaking the Gain--Bandwidth Conflict 213(1)
Current-feedback op-amps 213(1)
Follower-based amplifiers 214(1)
Current-conveyor amplifiers 214(1)
Producing a Controlled Output Current 215(2)
Closed-Loop Amplifier Performance 217(5)
Ideal Amplifiers 217(1)
Real Amplifiers 218(4)
Source and Load Isolation 222(2)
Conclusions 224(3)
References 225(2)
Noise, Gain and Bandwidth in Analog Design 227(30)
Robert G. Meyer
Gain--Bandwidth Concepts 227(7)
Gain--Bandwidth Shrinkage 230(2)
Gain--Bandwidth Trade-Offs Using Inductors 232(2)
Device Noise Representation 234(6)
Effect of Inductors on Noise Performance 238(2)
Trade-Offs in Noise and Gain--Bandwidth 240(17)
Methods of Trading Gain for Bandwidth and the Associated Noise Performance Implications [8] 240(3)
The Use of Single-Stage Feedback for the Noise-Gain-Bandwidth Trade-Off 243(5)
Use of Multi-Stage Feedback to Trade-Off Gain, Bandwidth and Noise Performance 248(7)
References 255(2)
Frequency Compensation 257(26)
Arie van Staveren
Michiel H. L. Kouwenhoven
Wouter A. Serdijn
Chris J. M. Verhoeven
Introduction 257(1)
Design Objective 258(2)
The Asymptotic-Gain Model 260(1)
The Maximum Attainable Bandwidth 260(5)
The LP Product 261(2)
The Group of Dominant Poles 263(2)
Pole Placement 265(12)
Resistive Broadbanding 268(2)
Pole--Zero Cancelation 270(2)
Pole Splitting 272(3)
Phantom Zeros 275(2)
Order of Preference 277(1)
Adding Second-Order Effects 277(1)
Example Design 278(3)
Conclusion 281(2)
References 281(2)
Frequency-Dynamic Range-Power 283(32)
Eric A. Vittoz
Yannis P. Tsividis
Introduction 283(1)
Fundamental Limits of Trade-Off 284(15)
Absolute Lower Boundary 284(2)
Filters 286(2)
Oscillators 288(4)
Voltage-to-Current and Current-to-Voltage Conversion 292(3)
Current Amplifiers 295(2)
Voltage Amplifiers 297(2)
Process-Dependent Limitations 299(4)
Parasitic Capacitors 299(1)
Additional Sources of Noise 300(1)
Mismatch of Components 301(1)
Charge Injection 301(1)
Non-Optimum Supply Voltage 302(1)
Companding and Dynamic Biasing 303(7)
Syllabic Companding 303(3)
Dynamic Biasing 306(2)
Performance in the Presence of blockers 308(1)
Instantaneous Companding 309(1)
Conclusion 310(5)
References 311(4)
Filters
Trade-Offs in Sensitivity, Component Spread and Component Tolerance in Active Filter Design 315(26)
George Moschytz
Introduction 315(1)
Basics of Sensitivity Theory 316(3)
The Component Sensitivity of Active Filters 319(6)
Filter Selectivity, Pole Q and Sensitivity 325(3)
Maximizing the Selectivity of RC Networks 328(4)
Some Design Examples 332(5)
Sensitivity and Noise 337(2)
Summary and Conclusions 339(2)
References 339(2)
Continuous-Time Filters 341(14)
Robert Fox
Introduction 341(1)
Filter-Design Trade-Offs: Selectivity, Filter Order, Pole Q and Transient Response 341(1)
Circuit Trade-Offs 342(2)
Linearity vs Tuneability 342(1)
Passive Components 342(1)
Tuneable Resistance Using MOSFETs: The MOSFET-C Approach 343(1)
The Transconductance-C (Gm-C) Approach 344(3)
Triode-Region Transconductors 345(1)
Saturation-Region Transconductors 346(1)
MOSFETs Used for Degeneration 346(1)
BJT-Based Transconductors 347(1)
Offset Differential Pairs 347(1)
Dynamic Range 347(2)
Differential Operation 349(1)
Log-Domain Filtering 349(1)
Transconductor Frequency-Response Trade-Offs 350(1)
Tuning Trade-Offs 351(2)
No tuning 352(1)
Off-chip tuning 352(1)
One-time post-fabrication tuning 352(1)
Automatic tuning 352(1)
Simulation Issues 353(2)
References 353(2)
Insights in Log-Domain Filtering 355(52)
Emmanuel M. Drakakis
Alison J. Burdett
General 355(5)
Synthesis and Design of Log-Domain Filters 360(14)
Impact of BJT Non-Idealities upon Log-Domain Transfer Functions: The Lowpass Biquad Example 374(6)
Floating Capacitor-Based Realization of Finite Transmission Zeros in Log-Domain: The Impact upon Linearity 380(3)
Effect of Modulation Index upon Internal Log-Domain Current Bandwidth 383(7)
Distortion Properties of Log-Domain Circuits: The Lossy Integrator Case 390(3)
Noise Properties of Log-Domain Circuits: The Lossy Integrator Case 393(8)
Summary 401(6)
References 401(6)
Switched Circuits
Trade-offs in the Design of CMOS Comparators 407(36)
A. Rodriguez-Vazquez
M. Delgado-Restituto
R. Dominguez-Castro
F. Medeiro
J.M. de la Rosa
Introduction 407(1)
Overview of Basic CMOS Voltage Comparator Architectures 408(15)
Single-Step Voltage Comparators 409(3)
Multistep Comparators 412(5)
Regenerative Positive-Feedback Comparators 417(4)
Pre-Amplified Regenerative Comparators 421(2)
Architectural Speed vs Resolution Trade-Offs 423(6)
Single-Step Comparators 423(2)
Multistep Comparators 425(1)
Regenerative Comparators 426(3)
On the impact of the offset 429(3)
Offset-Compensated Comparators 432(6)
Offset-Compensation Through Dynamic Biasing 433(2)
Offset Compensation in Multistep Comparators 435(1)
Residual Offset and Gain Degradation in Self-Biased Comparators 436(1)
Transient Behavior and Dynamic Resolution in Self-Biased Comparators 437(1)
Appendix. Simplified MOST Model 438(5)
References 439(4)
Switched-Capacitor Circuits 443(18)
Andrea Baschirotto
Introduction 443(2)
Trade-Off due to Scaled CMOS Technology 445(6)
Reduction of the MOS Output Impedance (ro) 446(1)
Increase of the Flicker Noise 447(1)
Increase of the MOS Leakage Current 447(1)
Reduction of the Supply Voltage 448(3)
Trade-Off in High-Frequency SC Circuits 451(5)
Trade-Off Between an IIR and a FIR Frequency Response 452(1)
Trade-Off in SC Parallel Solutions 453(1)
Trade-Off in the Frequency Choice 454(2)
Conclusions 456(5)
Acknowledgments 456(1)
References 457(4)
Compatibility of SC Technique with Digital VLSI Technology 461(30)
Kritsapon Leelavattananon
Chris Toumazou
Introduction 461(1)
Monolithic MOS Capacitors Available in Digital VLSI Processes 461(5)
Polysilicon-over-Polysilicon (or Double-Poly) Structure 462(1)
Polysilicon-over-Diffusion Structure 462(1)
Metal-over-Metal Structure 463(1)
Metal-over-Polysilicon Structure 464(1)
MOSFET Gate Structure 464(2)
Operational Amplifiers in Standard VLSI Processes 466(8)
Operational Amplifier Topologies 466(1)
Single-stage (telescopic) amplifier 466(1)
Folded cascode amplifier 466(1)
Gain-boosting amplifier 467(1)
Two-stage amplifier 468(1)
Frequency Compensation 469(1)
Miller compensation 469(1)
Miller compensation incorporating source follower 470(1)
Cascode Miller Compensation 471(1)
Common-Mode Feedback 472(2)
Charge-Domain Processing 474(3)
Linearity Enhanced Composite Capacitor Branches 477(8)
Series Compensation Capacitor Branch 480(2)
Parallel Compensation Capacitor Branch 482(1)
Balanced Compensation Capacitor Branch 483(2)
Practical Considerations 485(2)
Bias Voltage Mismatch 485(1)
Capacitor Mismatch 485(1)
Parasitic Capacitances 486(1)
Summary 487(4)
References 488(3)
Switched-Capacitors or Switched-Currents
Which Will Succeed? 491(26)
John Hughes
Apisak Worapishet
Introduction 491(1)
Test Vehicles and Performance Criteria 492(2)
Clock Frequency 494(5)
Switched-Capacitor Settling 495(2)
Switched-Currents Class A Settling 497(1)
Switched-Currents Class AB Settling 498(1)
Power Consumption 499(1)
Switched-Capacitors and Switched-Currents Class A Power Consumption 499(1)
Switched-Currents Class AB Power Consumption 499(1)
Signal-to-Noise Ratio 499(10)
Switched-Capacitors Noise 500(3)
Switched-Currents Class A Noise 503(3)
Switched-Current Class AB Noise 506(1)
Comparison of Signal-to-Noise Ratios 507(2)
Figure-of-Merit 509(1)
Switched-Capacitors 509(1)
Switched-Currents Class A 510(1)
Switched-Currents Class AB 510(1)
Comparison of Figures-of-Merit 510(4)
Conclusions 514(3)
References 514(3)
Oscillators
Design of Integrated LC VCOs 517(34)
Donhee Ham
Introduction 517(1)
Graphical Nonlinear Programming 518(1)
LC VCO Design Constraints and an Objective Function 519(7)
Design Constraints 522(1)
Phase Noise as an Objective Function 522(1)
Phase Noise Approximation 523(2)
Independent Design Variables 525(1)
LC VCO Optimization via GNP 526(11)
Example of Design Constraints 527(1)
GNP with a Fixed Inductor 527(3)
GNP with a Fixed Inductance Value 530(3)
Inductance and Current Selection 533(2)
Summary of the Optimization Process 535(1)
Remarks on Final Adjustment and Robust Design 536(1)
Discussion on LC VCO Optimization 537(3)
Simulation 540(1)
Experimental Results 541(4)
Conclusion 545(6)
Acknowledgments 546(1)
References 546(5)
Trade-Offs in Oscillator Phase Noise 551(40)
Ali Hajimiri
Motivation 551(1)
Measures of Frequency Instability 551(6)
Phase Noise 554(2)
Timing Jitter 556(1)
Phase Noise Modeling 557(8)
Up-Conversion of 1/f Noise 562(1)
Time-Varying Noise Sources 563(2)
Phase Noise Trade-Offs in LC Oscillators 565(9)
Tank Voltage Amplitude 565(5)
Noise Sources 570(1)
Stationary noise approximation 570(2)
Cyclostationary noise sources 572(1)
Design Implications 573(1)
Phase Noise Trade-Offs for Ring Oscillators 574(17)
The Impulse Sensitivity Function for Ring Oscillators 574(5)
Expressions for Phase Noise in Ring Oscillators 579(3)
Substrate and Supply Noise 582(2)
Design Trade-Offs in Ring Oscillators 584(1)
References 585(6)
Data Converters
Systematic Design of High-Performance Data Converters 591(22)
Georges Gielen
Jan Vandenbussche
Geert van der Plas
Walter Daems
Anne Van den Bosch
Michiel Steyaert
Willy Sansen
Introduction 591(1)
Systematic Design Flow for D/A Converters 592(2)
Current-Steering D/A Converter Architecture 594(3)
Generic Behavioral Modeling for the Top-Down Phase 597(2)
Sizing Synthesis of the D/A Converter 599(4)
Architectural-Level Synthesis 600(1)
Static performance 600(1)
Dynamic performance 601(1)
Circuit-Level Synthesis 602(1)
Static performance 602(1)
Dynamic performance 603(1)
Full Decoder Synthesis 603(1)
Clock Driver Synthesis 603(1)
Layout Synthesis of the D/A Converter 603(3)
Floorplanning 604(1)
Circuit and Module Layout Generation 604(1)
Current-source array layout generation 604(1)
Swatch array layout generation 605(1)
Full decoder standard cell place and route 605(1)
Converter Layout Assembly 606(1)
Extracted Behavioral Model for Bottom-Up Verification 606(1)
Experimental Results 607(3)
Conclusions 610(3)
Acknowledgments 610(1)
References 610(3)
Analog Power Modeling for Data Converters and Filters 613(18)
Georges Gielen
Erik Lauwers
Introduction 613(1)
Approaches for Analog Power Estimators 614(2)
A Power Estimation Model for High-Speed Nyquist-Rate ADCs 616(4)
The Power Estimator Derivation 616(3)
Results of the Power Estimator 619(1)
A Power Estimation Model for Analog Continuous-Time Filters 620(7)
The ACTIF Approach 620(1)
Description of the Filter Synthesis Part 621(3)
OTA Behavioral Modeling and Optimization for Minimal Power Consumption 624(1)
Modeling of the transconductances 624(1)
The distortion model 625(1)
Optimization 626(1)
Experimental Results 627(1)
Conclusions 627(4)
Acknowledgment 628(1)
References 628(3)
Speed vs. dynamic range Trade-Off in Oversampling Data Converters 631(34)
Richard Schreier
Jesper Steensgaard
Gabor C. Temes
Introduction 631(1)
Oversampling Data Converters 632(12)
Quantization Error 632(1)
Feedback Quantizers 633(3)
Oversampling D/A Converters 636(3)
Oversampling A/D Converters 639(1)
Multibit Quantization 640(4)
Mismatch Shaping 644(9)
Element Rotation 644(1)
Generalized Mismatch-Shaping 645(4)
Other Mismatch-Shaping Architectures 649(1)
Performance Comparison 650(3)
Reconstructing a Sampled Signal 653(12)
The Interpolation Process 654(1)
An interpolation system example 654(2)
Fundamental Architectures for Practical Implementations 656(1)
Single-bit delta-sigma modulation 657(1)
Multibit delta-sigma modulation 657(1)
High-resolution oversampled D/A converters 658(1)
High-Resolution Mismatch-Shaping D/A Converters 659(1)
A fresh look on mismatch shaping 659(1)
Practical implementations 660(2)
References 662(3)
Transceivers
Power-Conscious Design of Wireless Circuits and Systems 665(32)
Asad A. Abidi
Introduction 665(2)
Lowering Power across the Hierarchy 667(1)
Power Conscious RF and Baseband Circuits 668(29)
Dynamic Range and Power Consumption 668(2)
Lowering Power in Tuned Circuits 670(1)
Importance of Passives Quality in Resonant Circuits 671(2)
Low Noise Amplifiers 673(5)
Oscillators 678(3)
Mixers 681(4)
Frequency Dividers 685(1)
Baseband Circuits 686(3)
On-Chip Inductors 689(2)
Examples of Low Power Radio Implementations 691(1)
Conclusions: Circuits 692(1)
References 692(5)
Photoreceiver Design 697(26)
Mark Forbes
Introduction 697(1)
Review of Receiver Structure 698(2)
Front-End Small-Signal Performance 700(7)
Small-Signal Analysis 700(2)
Speed/Sensitivity Trade-Off 702(4)
Calculations, for example, parameters 706(1)
Noise Limits 707(2)
Post-Amplifier Performance 709(3)
Front-End and Post-Amplifier Combined Trade-Off 712(2)
Mismatch 714(4)
Conclusions 718(5)
Acknowledgments 718(1)
References 719(4)
Analog Front-End Design Considerations for DSL 723(24)
Nianxiong Nick Tan
Introduction 723(2)
System Considerations 725(3)
Digital vs Analog Process 725(1)
Active vs Passive Filters 726(2)
Data Converter Requirements for DSL 728(12)
Optimum Data Converters for ADSL 732(1)
Optimum ADCs for ADSL 732(2)
Optimum ADC for ADSL-CO 734(1)
Optimum ADC for ADSL-CP 735(1)
Optimum DACs 735(2)
Optimum DAC for ADSL-CO 737(1)
Optimum DAC for ADSL-CP 737(1)
Function of Filtering 738(2)
Circuit Considerations 740(4)
Oversampling vs Nyquist Data Converters 740(3)
SI vs SC 743(1)
Sampled-Data vs Continuous-Time Filters 743(1)
Gm-C vs RC filters 744(1)
Conclusions 744(3)
Acknowledgments 745(1)
References 745(2)
Low Noise Design 747(40)
Michiel H. L. Kouwenhoven
Arie van Staveren
Wouter A. Serdijn
Chris J. M. Verhoeven
Introduction 747(1)
Noise Analysis Tools 747(4)
Equivalent Noise Source 748(1)
Transform-I: Voltage Source Shift 749(1)
Transform-II: Current Source Shift 749(1)
Transform-III: Norton--Thevenin Transform 749(1)
Transform-IV: Shift through Twoports 750(1)
Low-Noise Amplifier Design 751(11)
Design of the Feedback Network 752(1)
Noise production by the feedback network 753(1)
Magnification of nullor noise 754(1)
Distortion increment and bandwidth reduction 755(1)
Design of the Active Part for Low Noise 756(1)
Noise Optimizations 757(1)
Noise matching to the source 757(2)
Optimization of the bias current 759(1)
Connecting stages in series/parallel 760(1)
Summary of optimizations 761(1)
Low Noise Harmonic Resonator Oscillator Design 762(10)
General Structure of a Resonator Oscillator 762(1)
Noise Contribution of the Resonator 763(1)
Design of the Undamping Circuit for Low Noise 764(1)
Principle implementation of the undamping circuit 765(1)
Amplitude control 765(1)
Noise performance 766(1)
Driving the oscillator load 766(1)
Noise Matching of the Resonator and Undamping Circuit: Tapping 767(2)
Power Matching 769(1)
Coupled Resonator Oscillators 770(2)
Low-Noise Relaxation Oscillator Design 772(15)
Phase Noise in Relaxation Oscillators 773(1)
Simple phase noise model 773(1)
Influence of the memory on the oscillator phase noise 774(2)
Influence of comparators on the oscillator phase noise 776(1)
Improvement of the Noise Behavior by Alternative Topologies 777(1)
Relaxation oscillators with memory bypass 778(2)
Coupled relaxation oscillators 780(4)
References 784(3)
Trade-Offs in CMOS Mixer Design 787(34)
Ganesh Kathiresan
Chris Toumazou
Introduction 787(2)
The RF Receiver Re-Visited 788(1)
Some Mixer Basics 789(3)
Mixers vs Multipliers 789(2)
Mixers: Nonlinear or Linear-Time-Variant? 791(1)
Mixer Figures of Merit 792(8)
Conversion Gain and Bandwidth 793(1)
1 dB Compression Point 794(2)
Third-Order Intercept Point 796(1)
Noise Figure 797(2)
Port-to-Port Isolation 799(1)
Common Mode Rejection, Power Supply, etc 799(1)
Mixer Architectures and Trade-Offs 800(17)
Single Balanced Differential Pair Mixer 800(3)
Double-Balanced Mixer and Its Conversion Gain 803(2)
Supply Voltage 805(1)
Active loads 805(1)
Inductive current source 805(1)
Two stack source coupled mixer 806(1)
Bulk driven topologies 807(2)
Linearity 809(1)
Source degeneration 809(2)
Switched MOSFET degeneration 811(1)
LO Feedthrough 812(1)
Mixer Noise 813(1)
Noise due to the load 814(1)
Noise due to the input transconductor 814(1)
Noise due to the switches 815(2)
Conclusion 817(4)
References 817(4)
A High-performance Dynamic-logic Phase-Frequency Detector 821(22)
Shenggao Li
Mohammed Ismail
Introduction 821(1)
Phase Detectors Review 822(5)
Multiplier 822(1)
Exclusive-OR Gate 823(2)
JK-Flipflop 825(1)
Tri-State Phase Detector 825(2)
Design Issues in Phase-Frequency Detectors 827(4)
Dead-Zone 827(2)
Blind-Zone 829(2)
Dynamic Logic Phase-Frequency Detectors 831(4)
A Novel Dynamic-Logic Phase-Frequency Detector 835(7)
Circuit Operation 836(1)
Performance Evaluation 837(5)
Conclusion 842(1)
References 842(1)
Trade-Offs in Power Amplifiers 843(40)
Chung Kei Thomas Chan
Steve Hung-Lung Tu
Chris Toumazou
Introduction 843(2)
Classification of Power Amplifiers 845(8)
Current-Source Power Amplifiers 845(3)
Switch-Mode Power Amplifiers 848(1)
Class D power amplifier 848(1)
Class E power amplifier 849(1)
Class F power amplifier 850(2)
Bandwidth Efficiency, Power Efficiency and Linearity 852(1)
Effect of Loaded Q-Factor on Class E Power Amplifiers 853(8)
Circuit Analysis 853(4)
Power Efficiency 857(1)
Circuit Simulation and Discussion 858(3)
Class E Power Amplifiers with Nonlinear Shunt Capacitance 861(17)
Numerical Computation of Optimum Component Values 863(1)
Basic equations 863(2)
Optimum operation (Alinikula's method [16]) 865(4)
Fourier analysis 869(1)
Normalized power capability 869(1)
Generalized Numerical Method 870(2)
Design example 872(1)
Small linear shunt capacitor 872(6)
Conclusion 878(5)
References 880(3)
Neural Processing
Trade-Offs in Standard and Universal CNN Cells 883(40)
Martin Hanggi
Radu Dogaru
Leon O. Chua
Introduction 883(1)
The Standard CNN 884(3)
Circuit Implementation of CNNs 886(1)
Standard CNN Cells: Robustness vs Processing Speed 887(15)
Reliability of a Standard CNN 887(1)
Introduction 887(1)
Absolute and relative robustness 888(1)
The Robustness of a CNN template set 888(2)
Template scaling 890(1)
Template design 890(2)
The Settling Time of a Standard CNN 892(1)
Introduction 892(1)
The exact approach for uncoupled CNNS 893(1)
Analysis of Propagation-Type Templates 893(1)
Introduction 893(1)
Examples of propagation-type templates 894(3)
Robust CNN Algorithms for High-Connectivity Tasks 897(1)
Template classes 898(2)
One-step vs algorithmic processing 900(1)
Concluding Remarks 901(1)
Universal CNN Cells and their Trade-Offs 902(21)
Preliminaries 902(2)
Pyramidal CNN cells 904(1)
Architecture 904(1)
Trade-offs 905(1)
Canonical Piecewise-linear CNN cells 906(1)
Characterization and architecture 906(1)
Trade-offs 907(1)
Example 908(1)
The Multi-Nested Universal CNN Cell 909(1)
Architecture and characterization 909(1)
Trade-offs 910(4)
An RTD-Based Multi-Nested Universal CNN Cell Circuit 914(3)
Concluding Remarks 917(1)
References 918(5)
Analog CAD
Top-Down Design Methodology For Analog Circuits Using Matlab and Simulink 923(30)
Naveen Chandra
Gordon W. Roberts
Introduction 923(2)
Design Methodology Motivation 925(2)
Optimization Procedure 926(1)
Switched Capacitor Delta-Sigma Design Procedure 927(2)
Switched Sampled Capacitor (kT/C) Noise 928(1)
OTA Parameters 929(1)
Modeling of ΔΣ Modulators in Simulink 929(9)
Sampled Capacitor (kT/C) Noise 930(1)
OTA Noise 931(1)
Switched Capacitor Integrator Non-Idealities 932(6)
Optimization Setup 938(7)
Implementation in Matlab 941(2)
Initial Conditions 943(2)
Additional Factors 945(1)
Summary of Simulation Results 945(1)
A Fully Coded ΔΣ Modulator Design Example 946(4)
Conclusion 950(3)
References 951(2)
Techniques and Applications of Symbolic Analysis for Analog Integrated Circuits 953(32)
Georges Gielen
Introduction 953(1)
What is Symbolic Analysis? 953(5)
Definition of Symbolic Analysis 953(3)
Basic Methodology of Symbolic Analysis 956(2)
Applications of Symbolic Analysis 958(7)
Insight into Circuit Behavior 958(2)
Analytic Model Generation for Automated Analog Circuit Sizing 960(1)
Interactive Circuit Exploration 961(1)
Repetitive Formula Evaluation 961(1)
Analog Fault Diagnosis 962(1)
Behavioral Model Generation 963(1)
Formal Verification 964(1)
Summary of Applications 965(1)
Present Capabilities and Limitations of Symbolic Analysis 965(11)
Symbolic Approximation 966(2)
Improving Computational Efficiency 968(1)
Simplification During Generation 969(2)
Simplification Before Generation 971(1)
Hierarchical Decomposition 971(3)
Symbolic Pole-Zero Analysis 974(1)
Symbolic Distortion Analysis 974(2)
Open Research Topics 976(1)
Comparison of Symbolic Simulators 976(1)
Conclusions 977(8)
Acknowledgments 979(1)
References 979(6)
Topics in IC Layout for Manufacture 985(48)
Barrie Gilbert
Layout: The Crucial Next Step 985(11)
An Architectural Analogy 988(1)
IC Layout: A Matter of ``Drafting''? 989(3)
A Shared Undertaking 992(1)
What Inputs should the Layouteer Expect? 993(3)
Interconnects 996(10)
Metal Limitations 998(2)
Other Metalization Trade-Offs 1000(6)
Substrates and the Myth of ``Ground'' 1006(4)
Device-Level Substrate Nodes 1009(1)
Starting an Analog Layout 1010(2)
Device Matching 1012(12)
The ``Biggest-of-All'' Layout Trade-Off 1015(1)
Matching Rules for Specific Components 1016(2)
Capacitor Matching 1018(2)
Circuit/Layout Synergy 1020(4)
Layout of Silicon-on-Insulator Processes 1024(5)
Consequences of High Thermal Resistance 1028(1)
Reflections on Superintegrated Layout 1029(4)
Index 1033
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×