精通Spark数据科学
副标题:无
分类号:
ISBN:9787115541567
微信扫一扫,移动浏览光盘
简介
目录
第 1章 数据科学生态系统 1
1.1 大数据生态系统简介 1
1.1.1 数据管理 2
1.1.2 数据管理职责 2
1.1.3 合适的工具 4
1.2 数据架构 4
1.2.1 数据采集 5
1.2.2 数据湖 6
1.2.3 数据科学平台 7
1.2.4 数据访问 8
1.3 数据处理技术 8
1.4 配套工具 10
1.4.1 Apache HDFS 10
1.4.2 亚马逊S3 12
1.4.3 Apache Kafka 13
1.4.4 Apache Parquet 14
1.4.5 Apache Avro 15
1.4.6 Apache NiFi 16
1.4.7 Apache YARN 17
1.4.8 Apache Lucene 18
1.4.9 Kibana 19
1.4.10 Elasticsearch 20
1.4.11 Accumulo 21
1.5 小结 22
第 2章 数据获取 23
2.1 数据管道 23
2.1.1 通用采集框架 24
2.1.2 GDELT数据集简介 25
2.2 内容登记 32
2.2.1 选择和更多选择 32
2.2.2 随流而行 32
2.2.3 元数据模型 33
2.2.4 Kibana仪表盘 35
2.3 质量保证 36
2.3.1 案例1——基本质量检查,无争用用户 36
2.3.2 案例2——进阶质量检查,无争用用户 36
2.3.3 案例3——基本质量检查,50%使用率争用用户 37
2.4 小结 37
第3章 输入格式与模式 39
3.1 结构化的生活是美好的生活 40
3.2 GDELT维度建模 40
3.3 加载数据 48
3.3.1 模式敏捷性 49
3.3.2 GKG ELT 51
3.4 Avro 54
3.4.1 Spark-Avro方法 55
3.4.2 教学方法 57
3.4.3 何时执行Avro转换 61
3.5 Apache Parquet 62
3.6 小结 63
第4章 探索性数据分析 64
4.1 问题、原则与规划 65
4.1.1 理解EDA问题 65
4.1.2 设计原则 65
4.1.3 探索的总计划 66
4.2 准备工作 67
4.2.1 基于掩码的数据剖析简介 67
4.2.2 字符类掩码简介 71
4.2.3 构建基于掩码的剖析器 73
4.3 探索GDELT 86
4.4 小结 107
第5章 利用Spark进行地理分析 108
5.1 GDELT和石油 108
5.1.1 GDELT事件 109
5.1.2 GDELT GKG 110
5.2 制订行动计划 110
5.3 GeoMesa 111
5.3.1 安装 112
5.3.2 GDELT采集 112
5.3.3 GeoMesa采集 113
5.3.4 GeoHash 117
5.3.5 GeoServer 120
5.4 计量油价 123
5.4.1 使用GeoMesa查询API 123
5.4.2 数据准备 125
5.4.3 机器学习 130
5.4.4 朴素贝叶斯 131
5.4.5 结果 132
5.4.6 分析 133
5.5 小结 134
第6章 采集基于链接的外部数据 135
6.1 构建一个大规模的新闻扫描器 135
6.1.1 访问Web内容 136
6.1.2 与Spark集成 138
6.1.3 创建可扩展的生产准备库 139
6.2 命名实体识别 142
6.2.1 Scala库 143
6.2.2 NLP攻略 143
6.2.3 构建可扩展代码 146
6.3 GIS查询 148
6.3.1 GeoNames数据集 148
6.3.2 构建高效的连接 149
6.3.3 内容除重 153
6.4 名字除重 154
6.4.1 用Scalaz进行函数式编程 155
6.4.2 简单清洗 158
6.4.3 DoubleMetaphone算法 158
6.5 新闻索引仪表板 160
6.6 小结 162
第7章 构建社区 163
7.1 构建一个人物图谱 163
7.1.1 联系链 164
7.1.2 从Elasticsearch中提取数据 166
7.2 使用Accumulo数据库 168
7.2.1 设置Accumulo 168
7.2.2 单元级安全 169
7.2.3 迭代器 170
7.2.4 从Elasticsearch到Accumulo 170
7.2.5 从Accumulo读取 173
7.2.6 AccumuloGraphxInputFormat和EdgeWritable 175
7.2.7 构建图 175
7.3 社区发现算法 177
7.3.1 Louvain算法 177
7.3.2 加权社区聚类 178
7.4 GDELT数据集 193
7.4.1 Bowie 效应 194
7.4.2 较小的社区 195
7.4.3 使用Accumulo单元级的安全性 196
7.5 小结 197
第8章 构建推荐系统 198
8.1 不同的方法 198
8.1.1 协同过滤 199
8.1.2 基于内容的过滤 199
8.1.3 自定义的方法 199
8.2 信息不完整的数据 200
8.2.1 处理字节 200
8.2.2 创建可扩展的代码 203
8.2.3 从时域到频域 204
8.3 构建歌曲分析器 209
8.4 构建一个推荐系统 214
8.4.1 PageRank算法 214
8.4.2 构建个性化的播放列表 217
8.5 扩大“蛋糕厂”规模 217
8.5.1 构建播放列表服务 217
8.5.2 应用Spark任务服务器 219
8.5.3 用户界面 223
8.6 小结 224
第9章 新闻词典和实时标记系统 226
9.1 土耳其机器人 226
9.1.1 人类智能任务 227
9.1.2 引导分类模型 227
9.1.3 懒惰、急躁、傲慢 233
9.2 设计Spark Streaming应用 234
9.2.1 两个架构的故事 234
9.2.2 Lambda架构的价值 237
9.2.3 Kappa架构的价值 239
9.3 消费数据流 240
9.3.1 创建GDELT数据流 240
9.3.2 创建Twitter数据流 242
9.4 处理Twitter数据 243
9.4.1 提取URL和主题标签 244
9.4.2 保存流行的主题标签 245
9.4.3 扩展缩短的URL 246
9.5 获取HTML内容 248
9.6 使用Elasticsearch作为缓存层 249
9.7 分类数据 252
9.7.1 训练朴素贝叶斯模型 253
9.7.2 确保线程安全 254
9.7.3 预测GDELT数据 255
9.8 Twitter土耳其机器人 256
9.9 小结 258
第 10章 故事除重和变迁 260
10.1 检测近似重复 260
10.1.1 从散列开始第 一步 262
10.1.2 站在“互联网巨人”的肩膀上 263
10.1.3 检测GDELT中的近似重复 266
10.1.4 索引GDELT数据库 271
10.2 构建故事 275
10.2.1 构建词频向量 275
10.2.2 维度灾难,数据科学之痛 277
10.2.3 优化KMeans 278
10.3 故事变迁 281
10.3.1 平衡态 281
10.3.2 随时间追踪故事 283
10.3.3 构建故事的关联 290
10.4 小结 294
第 11章 情感分析中的异常检测 295
11.1 在Twitter上追踪美国大选 296
11.1.1 流式获取数据 296
11.1.2 成批获取数据 297
11.2 情感分析 300
11.2.1 格式化处理Twitter数据 300
11.2.2 使用斯坦福NLP 302
11.2.3 建立管道 304
11.3 使用Timely作为时间序列数据库 306
11.3.1 存储数据 306
11.3.2 使用Grafana可视化情感 309
11.4 Twitter与戈德温(Godwin)点 311
11.4.1 学习环境 311
11.4.2 对模型进行可视化 314
11.4.3 Word2Graph和戈德温点 315
11.5 进入检测讽刺的一小步 320
11.5.1 构建特征 320
11.5.2 检测异常 324
11.6 小结 325
第 12章 趋势演算 326
12.1 研究趋势 327
12.2 趋势演算算法 328
12.2.1 趋势窗口 328
12.2.2 简单趋势 331
12.2.3 用户定义聚合函数 332
12.2.4 简单趋势计算 337
12.2.5 反转规则 339
12.2.6 FHLS条状图介绍 341
12.2.7 可视化数据 343
12.3 实际应用 351
12.3.1 算法特性 352
12.3.2 潜在的用例 352
12.4 小结 353
第 13章 数据保护 354
13.1 数据安全性 354
13.1.1 存在的问题 355
13.1.2 基本操作 355
13.2 认证和授权 356
13.3 访问 358
13.4 加密 359
13.4.1 数据处于静态时 359
13.4.2 数据处于传输时 368
13.4.3 混淆/匿名 369
13.4.4 遮罩 372
13.4.5 令牌化 375
13.5 数据处置 377
13.6 Kerberos认证 378
13.6.1 用例1:Apache Spark在受保护的HDFS中访问数据 379
13.6.2 用例2:扩展到自动身份验证 381
13.6.3 用例3:从Spark连接到安全数据库 381
13.7 安全生态 383
13.7.1 Apache Sentry 383
13.7.2 RecordService 384
13.8 安全责任 385
13.9 小结 386
第 14章 可扩展算法 387
14.1 基本原则 387
14.2 Spark架构 390
14.2.1 Spark的历史 390
14.2.2 动态组件 391
14.3 挑战 395
14.3.1 算法复杂性 395
14.3.2 数值异常 395
14.3.3 洗牌 398
14.3.4 数据模式 398
14.4 规划你的路线 399
14.5 设计模式和技术 409
14.5.1 Spark API 410
14.5.2 摘要模式 411
14.5.3 扩展并解决模式 411
14.5.4 轻量级洗牌 412
14.5.5 宽表模式 414
14.5.6 广播变量模式 415
14.5.7 组合器模式 416
14.5.8 集群优化 420
14.5.9 再分配模式 422
14.5.10 加盐键模式 423
14.5.11 二次排序模式 424
14.5.12 过滤过度模式 426
14.5.13 概率算法 426
14.5.14 选择性缓存 427
14.5.15 垃圾回收 428
14.5.16 图遍历 429
14.6 小结 430
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问