Data mining : practical machine learning tools and techniques with Java implementations = 数据挖...

副标题:无

作   者:Ian H. Witten, Eibe Frank著.

分类号:

ISBN:9787111127697

微信扫一扫,移动浏览光盘

简介

   本书是综合运用数据挖掘、数据分析、信息理论以及机器学习技术的里程碑。 ——微软研究院,图灵奖得主jimgray 这是一本将数据挖掘算法和数据挖掘实践完美结合起来的优秀教材。作者以其丰富的经验,对数据挖掘的概念和数据挖掘所用的技术(特别是机器学习)进行了深入浅出的介绍,并对应用机器学习工具进行数据挖掘给出了良好的建议。数据挖掘中的各个关键要素也融合在众多实例中加以介绍。   本书还介绍了weka这种基于java的软件系统。该软件系统可以用来分析数据集,找到适用的模式,进行正确的分析,也可以用来开发自己的机器学习方案。   本书的主要特点: 解释数据挖掘算法的原理。通过实例帮助读者根据实际情况选择合适的算法,并比较和评估不同方法得出的结果。 介绍提高性能的技术,包括数据处理以及组合不同方法得到的输出。 提供了本书所用的weka软件和附加学习材料,可以从[a href="http://www.mkp.com/datamining" target="_blank"]http://www.mkp.com/datamining[/a]上下载这些 资料。    jan h.witten新西兰怀卡托(waikato)大学计算机科学系教授。他是acm和新西兰皇家学会的成员,并参加了英国、美国、加拿大和新西兰的专业计算、信息检索。工程等协会。他著有多部著作,是多家技术杂志的作者,发表过大量论文。 eibe frank毕业于德国卡尔斯鲁厄大学计算机科学系,目前是新西兰怀卡托大学机器学习组的研究员。他经常应邀在机器学习会议上演示其研究成果,并在机器学习杂志上发表多篇论文。

目录

foreword vii

preface xvii

1 all about? 1

1.1 data mining and machine learning 2

describing structural patterns 4

machine learning 5

data mining 7

1.2 simple examples: the weather problem and others 8

the weather problem 8

contact lenses: an idealized problem 11

irises: a classic numeric dataset 13

cpu performance: introducing numeric prediction 15

labor negotiations: a more realistic example 16

soybean classification: a classic machine learning success 17

1.3 fielded applications 20

decisions involving judgment 21

screening images 22

load forecasting 23

diagnosis 24

marketing and sales 25

.1.4 machine learning and statistics 26

1.5 generalization as search 27

enumerating the concept space 28

bias 29

1.6 data mining and ethics 32

1.7 further reading 34

2 input: concepts, instances, attributes 37

2.1 what's a concept? 38

2.2 what's in an example? 41

2.3 what's in an attribute? 45

2.4 preparing the input 48

gathering the data together 48

arff format 49

attribute types 51

missing values 52

inaccurate values 53

getting to know your data 54

2.5 further reading 55

3 output: knowledge representation 57

3.1 decision tables 58

3.2 decision trees 58

3.3 classification rules 59

3.4 association rules 63

3.5 rules with exceptions 64

3.6 rules involving relations 67

3.7 trees for numeric prediction 70

3.8 instance-based representation 72

3.9 clusters 75

3.10 further reading 76

4 algorithms: the basic method's 77

4.1 inferring rudimentary rules 78

missing values and numeric attributes 80

discussion 81

4.2 statistical modeling 82

missing values and numeric attributes 85

discussion 88

4.3 divide and conquer. constructing decision trees 89

calculating information 93

highly branching attributes 94

discussion 97

4.4 covering algorithms: constructing rules 97

rules versus trees 98

a simple covering algorithm 98

rules versus decision lists 103

4.5 mining association rules 104

item sets 105

association rules 105

generating rules efficiently 108

discussion 111

4.6 linear models 112

numeric prediction 112

classification 113

discussion 113

4.7 instance-based learning 114

the distance function 114

discussion 115

4.8 further reading 116

5 credibility: evaluating what's been learned 119

5.1 training and testing 120

5.2 predicting performance 123

5.3 cross-validation 125

5.4 other estimates 127

leave-one-out 127

the bootstrap 128

5.5 comparing data mining schemes 129

5.6 predicting probabilities 133

quadratic loss function 134

informational loss function 135

discussion 136

5.7 counting the cost 137

lift charts 139

roc curves 141

cost-sensitive learning 144

discussion 145

5.8 evaluating numeric prediction 147

5.9 the minimum description length principle 150

5.10 applying mdl to clustering 154

5.11 further reading 155

6 implementations: real machine learning schemes 157

6.1 decision trees 159

numeric attributes 159

missing values 161

pruning 162

estimating error rates 164

complexity of decision tree induction 167

from trees to rules 168

c4.5: choices and options 169

discussion 169

6.2 classification rules 170

criteria for choosing tests 171

missing values, numeric attributes 172

good rules and bad rules 173

generating good rules 174

generating good decision lists 175

probability measure for rule evaluation 177

evaluating rules using a test set 178

obtaining rules from partial decision trees 181

rules with exceptions 184

discussion 187

6.3 extending linear dassification: support vector machines 188

the maximum margin hyperplane 189

nonlinear class boundaries 191

discussion 193

6.4 instance-based learning 193

reducing the number of exemplars 194

pruning noisy exemplars 194

weighting attributes 195

generalizing exemplars 196

distance functions for generalized exemplars 197

generalized distance functions 199

discussion 200

6.5 numeric prediction 201

model trees 202

building the tree 202

pruning the tree 203

nominal attributes 204

missing values 204

pseudo-code for model tree induction 205

locally weighted linear regression 208

discussion 209

6.6 clustering 210

iterative distance-based clustering 211

incremental clustering 212

category utility 217

probability-based clustering 218

the em algorithm 221

extending the mixture model 223

bayesian clustering 225

discussion 226

7 moving on: engineering die input and output 229

7.1 attribute selection 232

scheme-independent selection 233

searching the attribute space 235

scheme-specific selection 236

7.2 discreti~ingnumeric attributes 238

unsupervised discretization 239

entropy-based discretization 240

other discretization methods 243

entropy-based versus error-based discretization 244

converting discrete to numeric attributes 246

7.3 automatic data deansing 247

improving decision trees 247

robust regression 248

detecting anomalies 249

7.4 combining multiple models 250

bagging 251

boosting 254

stacking 258

error-correcting output codes 260

7.5 further reading 263

8 nuts and bolts: machine learning algorithms in java 265

8.1 getting started 267

8.2 javadoc and the dass library 271

classes, instances, and packages 272

the weka. core package 272

the weka. classifiers package 274

other packages 276

indexes 277

8.3 processing datasets using the machine learning programs 277

using m5' 277

generic options 279

scheme-specific options 282

classifiers 283

meta-learning schemes 286

filters 289

association rules 294

clustering 296

8.4 embedded machine learning 297

a simple message classifier 299

8.5 writing new learning schemes 306

an example classifier 306

conventions for implementing classifiers 314

writing filters 314

an example filter 316

conventions for writing filters 317

9 looking forward 321

9.1 learning from massive datasets 322

9.2 visualizing machine learning 325

visualizing the input 325

visualizing the output 327

9.3 incorporating domain knowledge 329

9.4 text mining 331

finding key phrases for documents 331

finding information in running text 333

soft parsing 334

9.5 mining the world wide web 335

9.6 further reading 336

references 339

index 351

about the authors 371


已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

Data mining : practical machine learning tools and techniques with Java implementations = 数据挖...
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon