数据驱动的科学和工程 机器学习、动力系统与控制详解 (美)史蒂文·L.布伦顿,(美)J.内森·库茨 著 王占山,施展,刘
副标题:无
分类号:
ISBN:9787111688617
微信扫一扫,移动浏览光盘
简介
目录
译者序
前言
常见的优化方法、方程、符号和缩略语
第一部分 降维和变换
第1章 奇异值分解1
1.1 概述1
1.2 矩阵近似4
1.3 数学性质和操作方法7
1.4 伪逆、最小二乘和回归11
1.5 主成分分析16
1.6 特征脸示例20
1.7 截断和对齐24
1.8 随机奇异值分解29
1.9 张量分解和N路数据数组33
第2章 傅里叶变换与小波变换37
2.1 傅里叶级数和傅里叶变换37
2.2 离散傅里叶变换和快速傅里叶变换45
2.3 偏微分方程的变换51
2.4 Gabor变换和频谱图56
2.5 小波和多分辨率分析61
2.6 二维变换和图像处理63
第3章 稀疏性和压缩感知68
3.1 稀疏性和压缩68
3.2 压缩感知71
3.3 压缩感知示例74
3.4 压缩几何77
3.5 稀疏回归80
3.6 稀疏表示83
3.7 鲁棒主成分分析87
3.8 稀疏传感器布置89
第二部分 机器学习和数据分析
第4章 回归和模型选择95
4.1 经典曲线拟合96
4.2 非线性回归与梯度下降101
4.3 回归与方程组Ax = b:超定和欠定系统106
4.4 优化是回归的基石111
4.5 帕累托边界和简约原则115
4.6 模型选择:交叉验证119
4.7 模型选择:信息准则123
第5章 聚类和分类127
5.1 特征选择和数据挖掘127
5.2 监督学习和无监督学习132
5.3 无监督学习:k均值聚类135
5.4 无监督层次聚类:树状图139
5.5 混合模型和期望优选化算法142
……
前言
常见的优化方法、方程、符号和缩略语
第一部分 降维和变换
第1章 奇异值分解1
1.1 概述1
1.2 矩阵近似4
1.3 数学性质和操作方法7
1.4 伪逆、最小二乘和回归11
1.5 主成分分析16
1.6 特征脸示例20
1.7 截断和对齐24
1.8 随机奇异值分解29
1.9 张量分解和N路数据数组33
第2章 傅里叶变换与小波变换37
2.1 傅里叶级数和傅里叶变换37
2.2 离散傅里叶变换和快速傅里叶变换45
2.3 偏微分方程的变换51
2.4 Gabor变换和频谱图56
2.5 小波和多分辨率分析61
2.6 二维变换和图像处理63
第3章 稀疏性和压缩感知68
3.1 稀疏性和压缩68
3.2 压缩感知71
3.3 压缩感知示例74
3.4 压缩几何77
3.5 稀疏回归80
3.6 稀疏表示83
3.7 鲁棒主成分分析87
3.8 稀疏传感器布置89
第二部分 机器学习和数据分析
第4章 回归和模型选择95
4.1 经典曲线拟合96
4.2 非线性回归与梯度下降101
4.3 回归与方程组Ax = b:超定和欠定系统106
4.4 优化是回归的基石111
4.5 帕累托边界和简约原则115
4.6 模型选择:交叉验证119
4.7 模型选择:信息准则123
第5章 聚类和分类127
5.1 特征选择和数据挖掘127
5.2 监督学习和无监督学习132
5.3 无监督学习:k均值聚类135
5.4 无监督层次聚类:树状图139
5.5 混合模型和期望优选化算法142
……
数据驱动的科学和工程 机器学习、动力系统与控制详解 (美)史蒂文·L.布伦顿,(美)J.内森·库茨 著 王占山,施展,刘
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×