神经网络设计

副标题:无

作   者:[美]哈根等 著,戴葵等 译

分类号:

ISBN:9787111075851

微信扫一扫,移动浏览光盘

简介

本书主要讲述神经网络的基本概念,介绍实用的网络模型、学习规则和训练方法。全书分19章,内容涵盖神经元模型和网络结构、感知机学习规则、有监督的Hebb学习、Widrow—Hoff学习算法、反向传播算法及其变形、联想学习、竞争网络、Grossberg网络、自适应谐振理论和Hopfield网络。书中注重对数学分析方法和性能优化的讨论,强调神经网络在模式识别、信号处理以及控制系统等实际工程问题中的应用。同时本书包含大量例题、习题,并配有基于MATLAB软件包的“神经网络设计演示”程序。本书可以作为大学高年级本科生或一年级研究生的神经网络课程教材,也可供从事相关研究工作的科技人员参考。

目录

出版者的话
专家委员会
译者序
前言
第1章 绪论
1.1 目的
1.2 历史
1.3 应用
1.4 生物学的启示
参考文献
第2章 神经元模型和网络结构
2.1 目的
2.1 理论和实例
2.2.1 符号
2.2.2 神经元模型
2.2.3 网络结构
2.3 小结
2.4 例题
2.5 结束语
习题
第3章 一个说明性实例
3.1 目的
3.2 理论和实例
3.2.1 问题描述
3.2.2 感知机
3.2.3 Hamming网络
3.2.4 Hopfield网络
3.3 结束语
习题
第4章 感知机学习规则
4.1 目的
4.2 理论和实例
4.2.1 学习规则
4.2.2 感知机的结构
4.2.3 感知机学习规则
4.2.4 收敛性证明
4.3 小结
4.4 例题
4.5 结束语
参考文献
习题
第5章 信号和权值向量空间
5.1 目的
5.2 理论和实例
5.2.1 线性向量空间
5.2.2 线性无关
5.2.3 生成空间
5.2.4 内积
5.2.5 范数
5.2.6 正交性
5.2.7 向量展开式
5.3 小结
5.4 例题
5.5 结束语
参考文献
习题
第6章 神经网络中的线性变换
6.1 目的
6.2 理论和实例
6.2.1 线性变换
6.2.2 矩阵表示
6.2.3 基变换
6.2.4 特征值和特征向量
6.3 小结
6.4 例题
6.5 结束语
参考文献
习题
第7章 有监督的Hebb学习
第8章 性能曲面和最优点
第9章 性能优化
第10章 Widrow-Hoff学习算法
第11章 反向传播
第12章 反向传播算法的变形
第13章 联想学习
第14章 竞争网络
第15章 Grossberg网络
第16章 自适应谐振理论
第17章 稳定性
第18章 Hopfield网络
第19章 结束语
附录A 文献目录
附录B 符号
附录C 软件
索引

已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

神经网络设计
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    亲爱的云图用户,
    光盘内的文件都可以直接点击浏览哦

    无需下载,在线查阅资料!

    loading icon