
微信扫一扫,移动浏览光盘
简介
A Treatise in Fluid Dynamics is a textbook for beginning
engineering students who have background of basic calculus and
physics. This textbook follows a typical sequence of topics of
dynamics of fluids by starting with an introduction to the
subject, concentrating on terminologies, simple concepts, and
clarifying adoption of the system and control volume approach to
describe the motion of the fluid. It then follows by unsteady im
-pressible incompressible flows, impressible potential flows,
numerical computation of fluid dynamic problems,viscous flows,
and open channel flows. A large numbers of examples, such as
sluice gate, a sharp crested weir, jet-plate interaction, etc. ,
are presented throughout the textbook to emphasize the
applications of fluid dynamics to various practical problems.
Some simple Fortran computer programs are provided for
calculating incompressible potential flow past simple geometrical
bodies based upon surface source distributions and other
problems. As this textbook is the extended version of the lecture
notes prepared by the first author throughout his career of
teaching and research in the areas of gas dynamics, fluid
dynamics and thermodynamics at the University of Illinois at
Urbana-Champaign and Florida Atlantic University, it can serve as
a useful reference book for graduate students and researchers in
the related technical fields.
目录
CHAPTER 1 BASIC EQUATIONS GOVERNING THE FLOW OF FLUIDS
1.1BASIC PRINCIPLES
1.2BASIC CONCEPTS IN THE FORMULATION OF THE FLOW OF A FLUID
1.2.1 Lagrangian Formulation
1.2.2 Eulerian Formulation
1.2.3 Differentiation in The Eulerian Scheme
1. 2.4 System and Control Volume Concepts
1.3 INTEGRAL THEOREMS
1.3.1 Green's Theorem (Gauss Theorem)
1.3.2 Stokes Theorem
1.3.3 The Dot, Cross and Dyadic Multiplication
1.3.4 The Stress Tensor and the Constitutive Relationship for a Newtonian Fluid
1.4 BASIC PRINCIPLES AND THEIR APPLICATIONSTO THE FLUID IN MOTION
1.4.1 The Principle of Conservation of Massthe Continuity Equation
1.4.2 The Momentum Principle
1.4.3 Streamline, Path-line, Streak-line, and Stream Filament
1.4.4 The Streamline System of Coordinates
1.5 ENERGY PRINCIPLE
1.5.1 The First Law of Thermodynamics
1.5.2 The Differential Equation for the Energy Principle
1.6STREAM FUNCTION FOR STEADY TWO DIMENSION AND AXIAL-SYM-METRIC FLOWS
1.6.1 Stream Function for Two Dimensional Flows
1.6.2 Stream Function for Axially Symmetric Flows
1.7 SUMMARYREFERENCES
CHAPTER2 APPLICATION OF BERNOULLI's PRINCIPLE TO SOMEINCOMPRESSIBLE FLOWS
2.1 ACCELERATION OF THE FLOW TOWARD THE STEADY FLOW SOLUTION
2.2 FLOW THROUGH AN L-SHAPED TUBE OF CONSTANT AREA
2.3 DISCHARGE OF AN INCOMPRESSIBLE FLUID THROUGH A NOZZLE
2.4 QUASI-STEADY FLOW ANALYSIS ON FLOW PROBLEMS
2.5 OTHER EXAMPLES OF FLOW WITH SPHERICAL SYMMETRY
2.5.1 The Pressure Field within an Infinite Amount of Fluid
2.5.2 The Motion of an Incompressible Fluid due to the Attractive Field Force
2.5.3 The Motion of a Finite Amount of Fluid with Spherical Symmetry
2.6 SUMMARYREFERENCE
CHAPTER 3 POTENTIAL FLOW OF AN IDEAL FLUID
3.1 THE VELOCITY POTENTIAL FUNCTION AND THECONDITION OF ITS EXISTENCE
……
CHAPTER 4 NUMERICAL COMPUTATIONS ON FLUID DYNAMIC PROBLEMS——WITH EMPHASIS ON INVISCID FLOWS
CHAPTER 5 VISCOUS FLOWS INTRODUCTION
CHAPTER 6 OPEN CHANNEL FLOWS INTRODUCTION
APPENDIX A A REVIEW OF VECTOR-ANALYSIS
APPENDIX B VARIOUS VECTOR EXPRESSIONS IN ORTHOGONAL CURVILINEAR SYSTEM OF COORDINATES
APPENDIX C MATHEMATIC PROCEDURE TO COMPUTE VENA-CONTRACTING COEFFICIENTS
1.1BASIC PRINCIPLES
1.2BASIC CONCEPTS IN THE FORMULATION OF THE FLOW OF A FLUID
1.2.1 Lagrangian Formulation
1.2.2 Eulerian Formulation
1.2.3 Differentiation in The Eulerian Scheme
1. 2.4 System and Control Volume Concepts
1.3 INTEGRAL THEOREMS
1.3.1 Green's Theorem (Gauss Theorem)
1.3.2 Stokes Theorem
1.3.3 The Dot, Cross and Dyadic Multiplication
1.3.4 The Stress Tensor and the Constitutive Relationship for a Newtonian Fluid
1.4 BASIC PRINCIPLES AND THEIR APPLICATIONSTO THE FLUID IN MOTION
1.4.1 The Principle of Conservation of Massthe Continuity Equation
1.4.2 The Momentum Principle
1.4.3 Streamline, Path-line, Streak-line, and Stream Filament
1.4.4 The Streamline System of Coordinates
1.5 ENERGY PRINCIPLE
1.5.1 The First Law of Thermodynamics
1.5.2 The Differential Equation for the Energy Principle
1.6STREAM FUNCTION FOR STEADY TWO DIMENSION AND AXIAL-SYM-METRIC FLOWS
1.6.1 Stream Function for Two Dimensional Flows
1.6.2 Stream Function for Axially Symmetric Flows
1.7 SUMMARYREFERENCES
CHAPTER2 APPLICATION OF BERNOULLI's PRINCIPLE TO SOMEINCOMPRESSIBLE FLOWS
2.1 ACCELERATION OF THE FLOW TOWARD THE STEADY FLOW SOLUTION
2.2 FLOW THROUGH AN L-SHAPED TUBE OF CONSTANT AREA
2.3 DISCHARGE OF AN INCOMPRESSIBLE FLUID THROUGH A NOZZLE
2.4 QUASI-STEADY FLOW ANALYSIS ON FLOW PROBLEMS
2.5 OTHER EXAMPLES OF FLOW WITH SPHERICAL SYMMETRY
2.5.1 The Pressure Field within an Infinite Amount of Fluid
2.5.2 The Motion of an Incompressible Fluid due to the Attractive Field Force
2.5.3 The Motion of a Finite Amount of Fluid with Spherical Symmetry
2.6 SUMMARYREFERENCE
CHAPTER 3 POTENTIAL FLOW OF AN IDEAL FLUID
3.1 THE VELOCITY POTENTIAL FUNCTION AND THECONDITION OF ITS EXISTENCE
……
CHAPTER 4 NUMERICAL COMPUTATIONS ON FLUID DYNAMIC PROBLEMS——WITH EMPHASIS ON INVISCID FLOWS
CHAPTER 5 VISCOUS FLOWS INTRODUCTION
CHAPTER 6 OPEN CHANNEL FLOWS INTRODUCTION
APPENDIX A A REVIEW OF VECTOR-ANALYSIS
APPENDIX B VARIOUS VECTOR EXPRESSIONS IN ORTHOGONAL CURVILINEAR SYSTEM OF COORDINATES
APPENDIX C MATHEMATIC PROCEDURE TO COMPUTE VENA-CONTRACTING COEFFICIENTS
Treatise in fluid dynamics
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×
