简介
本书是基于作者多年教学实践的积累,整理编写而成的.全书共分三册。第一册分为6章:实数与函数,极限论,连续函数,微积分(一),微积分(二),不定积分。第二册分为6章:定积分,反常积分,常数项级数,函数项级数,Taylor级数,Fourier级数。第三册分为8章:多元函数的极限与连续性,多元函数微分学,隐函数存在定理,一般极值与条件极值,含参变量的积分,重积分,曲线积分与曲面积分,各种积分之间的联系。本书选择的习题起点适当提高,侧重理论性和典范性.书中还添加了若干注记,便于读者厘清某些误解。本书适合理工科院校及师范院校数学专业的本科生、研究生及教师参考使用。
目录
前言
第1章 多元函数的极限与连续性
1.1 集合与点集论
1.2 多元函数及其极限
1.3 多元函数的连续性
第2章 多元函数微分学
2.1 一阶偏导数与(全)微分(主要以二、三元函数为例)
2.2 高阶偏导数与高阶(全)微分(以二元函数为例)
2.3 隐函数的求导法(以二、三元函数为例)
2.4 三维空间几何形态的描述
2.5 方向导数、梯度(以二、三元函数为例)
2.6 Taylor公式(以二元函数为例)
第3章 隐函数存在定理
3.1 隐函数存在定理
3.2 逆变换存在定理
3.3 函数相关性(以二元函数为例)
第4章 一般极值与条件极值
4.1 一般极值问题
4.2 条件极值问题
第5章 含参变量的积分
5.1 含参变量的定积分
5.2 含参变量的反常积分
5.3 Euler积分——B函数与г函数
第6章 重积分
6.1 重积分与累次积分
6.2 重积分的变量替换
*6.3 n重积分
6.4 反常重积分(以二重积分为例)
第7章 曲线积分与曲面积分
7.1 第一型曲线积分
7.2 第二型曲线积分
7.3 曲面面积
7.4 第一型曲面积分
7.5 第二型曲面积分
第8章 各种积分之间的联系
8.1 Green公式
8.2 Gauss公式
8.3 Stokes公式
8.4 曲线积分与路径无关性
第1章 多元函数的极限与连续性
1.1 集合与点集论
1.2 多元函数及其极限
1.3 多元函数的连续性
第2章 多元函数微分学
2.1 一阶偏导数与(全)微分(主要以二、三元函数为例)
2.2 高阶偏导数与高阶(全)微分(以二元函数为例)
2.3 隐函数的求导法(以二、三元函数为例)
2.4 三维空间几何形态的描述
2.5 方向导数、梯度(以二、三元函数为例)
2.6 Taylor公式(以二元函数为例)
第3章 隐函数存在定理
3.1 隐函数存在定理
3.2 逆变换存在定理
3.3 函数相关性(以二元函数为例)
第4章 一般极值与条件极值
4.1 一般极值问题
4.2 条件极值问题
第5章 含参变量的积分
5.1 含参变量的定积分
5.2 含参变量的反常积分
5.3 Euler积分——B函数与г函数
第6章 重积分
6.1 重积分与累次积分
6.2 重积分的变量替换
*6.3 n重积分
6.4 反常重积分(以二重积分为例)
第7章 曲线积分与曲面积分
7.1 第一型曲线积分
7.2 第二型曲线积分
7.3 曲面面积
7.4 第一型曲面积分
7.5 第二型曲面积分
第8章 各种积分之间的联系
8.1 Green公式
8.2 Gauss公式
8.3 Stokes公式
8.4 曲线积分与路径无关性
数学分析习题演练.第三册
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×