人工智能在量化交易中的应用与实战

副标题:无

作   者:王征

分类号:

ISBN:9787113257842

微信扫一扫,移动浏览光盘

简介


本书首先讲解人工智能的基础知识,即什么是人工智能,为什么要学习人工智能,什么是智能,智能类型,人工智能的研究与应用领域,为什么使用Python 来开发人工智能,利用量化交易平台编写Python 程序,人工智能的发展历史;然后讲解Python 编程基础和人工智能的三个重要的包,即Numpy 包、Pandas 包和Matplotlib 包;接着讲解5 种机器学习算法,即决策树、随机森林、支持向量机(SVM)、朴素贝叶斯和人工智能的神经网络;然后讲解Python 量化交易策略的编写、获取数据函数、Python 基本面量化选股、Python 量化择时的技术指标函数、Python 量化交易策略的回测技巧、Python 量化交易策略的机器学习方法应用;*后讲解Python 量化交易策略的因子分析技巧和Python 量化交易策略实例。 在讲解过程中既考虑读者的学习习惯,又通过具体实例剖析讲解人工智能在量化交易应用中的热点问题、关键问题及种种难题。 本书适用于各种投资者,如股民、期民、中小散户、职业操盘手和专业金融评论人士,更适用于那些有志于在这个充满风险、充满寂寞的征程上默默前行的征战者和屡败屡战、愈挫愈勇并*终战胜失败、战胜自我的勇者。

目录


第1章 人工智能快速入门 / 1

1.1 初识人工智能 / 2

1.1.1 什么是人工智能 / 2

1.1.2 为什么要学习人工智能 / 2

1.2 智能概述 / 4

1.2.1 智能类型 / 4

1.2.2 智能的组成 / 6

1.3 人工智能的研究与应用领域 / 8

1.3.1 专家系统 / 8

1.3.2 自然语言理解 / 9

1.3.3 机器学习 / 9

1.3.4 机器定理证明 / 10

1.3.5 自动程序设计 / 11

1.3.6 分布式人工智能 / 12

1.3.7 机器人学 / 13

1.3.8 模式识别 / 14

1.3.9 人机博弈 / 14

1.3.10 计算机视觉 / 15

1.3.11 软计算 / 15

1.3.12 智能控制 / 16

1.3.13 智能规划 / 17

1.4 人工智能的开发语言 / 18

1.4.1 为什么使用Python来开发人工智能 / 18

1.4.2 Python的下载和安装 / 18

1.4.3 Python程序的编写 / 21

1.4.4 利用量化交易平台编写Python程序 / 24

1.5 人工智能的发展历史 / 27

1.5.1 计算机时代 / 27

1.5.2 大量程序 / 28

1.5.3 强弱人工智能 / 29

第2章 Python 编程基础 / 31

2.1 Python的基本数据类型 / 32

2.1.1 数值类型 / 32

2.1.2 字符串 / 34

2.2 变量与赋值 / 37

2.2.1 变量命名规则 / 37

2.2.2 变量的赋值 / 38

2.3 Python的基本运算 / 39

2.3.1 算术运算 / 39

2.3.2 赋值运算 / 41

2.3.3 位运算 / 42

2.4 Python的选择结构 / 43

2.4.1 关系运算 / 43

2.4.2 逻辑运算 / 45

2.4.3 if 语句 / 46

2.4.4 嵌套 if 语句 / 48

2.5 Python的循环结构 / 49

2.5.1 while循环 / 50

2.5.2 while 循环使用else语句 / 51

2.5.3 无限循环 / 51

2.5.4 for循环 / 52

2.5.5 在for循环中使用range()函数 / 53

2.5.6 break语句 / 54

2.5.7 continue语句 / 55

2.5.8 pass语句 / 56

2.6 Python的特征数据类型 / 57

2.6.1 列表 / 57

2.6.2 元组 / 61

2.6.3 字典 / 63

2.6.4 集合 / 64

2.7 Python的函数 / 67

2.7.1 函数的定义与调用 / 67

2.7.2 参数传递 / 69

2.7.3 匿名函数 / 71

2.7.4 变量作用域 / 72

2.8 Python的面向对象 / 73

2.8.1 面向对象概念 / 73

2.8.2 类与实例 / 74

2.8.3 模块的引用 / 77

2.9 Python的代码格式 / 78

2.9.1 代码缩进 / 78

2.9.2 代码注释 / 79

2.9.3 空行 / 79

2.9.4 同一行显示多条语句 / 79

第3章 人工智能的Numpy 包 / 81

3.1 初识Numpy包 / 82

3.2 ndarray数组基础 / 82

3.2.1 创建Numpy数组 / 83

3.2.2 Numpy特殊数组 / 86

3.2.3 Numpy序列数组 / 90

3.2.4 Numpy数组索引 / 91

3.2.5 Numpy数组运算 / 92

3.2.6 Numpy数组复制 / 93

3.3 Numpy的矩阵 / 94

3.4 Numpy的线性代数 / 96

3.4.1 两个数组的点积 / 96

3.4.2 两个向量的点积 / 97

3.4.3 一维数组的向量内积 / 97

3.4.4 矩阵的行列式 / 98

3.4.5 矩阵的逆 / 100

3.5 Numpy的文件操作 / 101

第4章 人工智能的Pandas 包 / 105

4.1 Pandas的数据结构 / 106

4.2 一维数组系列(Series) / 106

4.2.1 创建一个空的系列(Series) / 106

4.2.2 从ndarray创建一个系列(Series) / 107

4.2.3 从字典创建一个系列(Series) / 109

4.2.4 从有位置的系列(Series)中访问数据 / 109

4.2.5 使用标签检索数据 / 110

4.3 二维数组DataFrame / 111

4.3.1 创建DataFrame / 111

4.3.2 数据的查看 / 112

4.3.3 数据的选择 / 116

4.3.4 数据的处理 / 122

4.4 三维数组Panel / 124

第5章 人工智能的Matplotlib 包 / 127

5.1 Matplotlib包的优点 / 128

5.2 figure()函数的应用 / 128

5.2.1 figure()函数的各参数意义 /128

5.2.2 figure()函数的实例 / 129

5.3 plot()函数的应用 / 131

5.3.1 plot()函数的各参数意义 /131

5.3.2 plot()函数的实例 / 132

5.4 subplot()函数的应用 / 133

5.4.1 subplot()的各参数意义 / 134

5.4.2 subplot()的实例 / 134

5.5 add_axes方法的应用 / 135

5.6 legend()函数的应用 / 137

5.7 设置字体格式 / 139

5.8 设置线条的宽度和颜色 / 140

5.9 坐标轴网格 / 142

5.10 绘制柱状图 / 143

5.11 绘制色图和等高线图 / 144

5.12 绘制立体三维图形 / 146

第6章 决策树和随机森林 / 151

6.1 决策树 / 152

6.1.1 什么是决策树 / 152

6.1.2 决策树的组成 / 153

6.1.3 决策树的优点 / 153

6.1.4 决策树的缺点 / 154

6.1.5 决策树的构造 / 154

6.1.6 纯度判断方法 / 155

6.1.7 决策树的剪枝 / 162

6.1.8 利用Python代码实现决策树 / 163

6.2 随机森林 / 167

6.2.1 随机森林的构建 / 167

6.2.2 随机森林的优缺点 / 168

6.2.3 随机森林的应用范围 / 168

6.2.4 利用Python代码实现随机森林 /169

第7章 支持向量机(SVM)和朴素贝叶斯 / 173

7.1 支持向量机(SVM) / 174

7.1.1 什么是支持向量机(SVM) / 174

7.1.2 支持向量机(SVM)的工作原理 / 174

7.1.3 核函数 / 175

7.1.4 支持向量机(SVM)的优点 / 177

7.1.5 支持向量机(SVM)的缺点 / 177

7.1.6 利用Python代码实现支持向量机(SVM)/ 177

7.2 朴素贝叶斯 / 182

7.2.1 什么是朴素贝叶斯 / 182

7.2.2 朴素贝叶斯的算法思想 / 182

7.2.3 朴素贝叶斯的算法步骤 / 183

7.2.4 朴素贝叶斯的优缺点 / 184

7.2.5 利用Python代码实现高斯朴素贝叶斯 /184

7.2.6 利用Python代码实现多项式分布朴素贝叶斯 / 187

7.2.7 利用Python代码实现伯努力朴素贝叶斯/ 188

第8章 人工智能的神经网络 / 191

8.1 初识人工神经网络 / 192

8.1.1 什么是人工神经网络 / 192

8.1.2 大脑中的神经元细胞和神经元细胞网络 /192

8.1.3 人工神经网络的基本特征 / 193

8.1.4 人工神经网络的特点 / 195

8.2 人工神经网络的算法 / 195

8.3 神经网络库Pybrain / 197

8.3.1 神经网络的创建 / 197

8.3.2 神经网络的数据集定义 / 201

8.3.3 训练神经网络 / 202

8.3.4 循环神经网络 / 204

8.4 人工神经网络实例 / 205

第9章 Python 量化交易策略的编写 / 209

9.1 Python量化交易策略的组成 /210

9.1.1 初始化函数(initialize) / 211

9.1.2 开盘前运行函数(before_market_open) / 212

9.1.3 开盘时运行函数(market_open) / 213

9.1.4 收盘后运行函数(after_market_close) / 214

9.2 Python量化交易策略的设置函数 /214

9.2.1 设置基准函数 / 215

9.2.2 设置佣金/印花税函数 / 215

9.2.3 设置滑点函数 / 217

9.2.4 设置动态复权(真实价格)模式函数 /217

9.2.5 设置成交量比例函数 / 218

9.2.6 设置是否开启盘口撮合模式函数 / 218

9.2.7 设置要操作的股票池函数 / 218

9.3 Python量化交易策略的定时函数 /219

9.3.1 定时函数的定义及分类 / 219

9.3.2 定时函数各项参数的意义 / 219

9.3.3 定时函数的注意事项 / 220

9.3.4 定时函数的实例 / 221

9.4 Python量化交易策略的下单函数 /222

9.4.1 按股数下单函数 / 222

9.4.2 目标股数下单函数 / 223

9.4.3 按价值下单函数 / 223

9.4.4 目标价值下单函数 / 224

9.4.5 撤单函数 / 224

9.4.6 获取未完成订单函数 / 225

9.4.7 获取订单信息函数 / 225

9.4.8 获取成交信息函数 / 226

9.5 Python量化交易策略的日志log/ 226

9.5.1 设定log级别 / 226

9.5.2 log.info / 227

9.6 Python量化交易策略的常用对象 /227

9.6.1 Order对象 / 227

9.6.2 全局对象g / 228

9.6.3 Trade对象 / 229

9.6.4 tick对象 / 229

9.6.5 Context对象 / 230

9.6.6 Position对象 / 231

9.6.7 SubPortfolio对象 / 232

9.6.8 Portfolio对象 / 233

9.6.9 SecurityUnitData对象 / 233

第10章 Python 量化交易策略的获取数据函数 / 235

10.1 获取股票数据的history()函数 / 236

10.1.1 各项参数的意义 / 236

10.1.2 history()函数的应用实例 / 238

10.2 获取一只股票数据的attribute_history()函数 / 241

10.3 查询一个交易日股票财务数据的get_fundamentals()函数 / 242

10.3.1 各项参数的意义 / 242

10.3.2 get_fundamentals ()函数的应用实例 / 243

10.4 查询股票财务数据的get_fundamentals_continuously()函数 / 249

10.5 获取股票特别数据的get_current_data()函数 / 250

10.6 获取指数成分股代码的get_index_stocks()函数 / 251

10.6.1 各项参数的意义 / 251

10.6.2 get_index_stocks ()函数的应用实例 / 252

10.7 获取行业成分股代码的get_industry_stocks()函数 / 253

10.8 获取概念成本股代码的get_concept_stocks()函数 / 255

10.9 获取所有数据信息的get_all_securities()函数 / 256

10.9.1 各项参数的意义 / 256

10.9.2 get_all_securities()函数的应用实例 / 257

10.10 获取一只股票信息的get_security_info()函数 / 259

10.11 获取龙虎榜数据的get_billboard_list()函数 / 260

10.11.1 各项参数的意义 / 260

10.11.2 get_billboard_list()函数的应用实例 / 261

10.12 获取限售解禁数据的get_locked_shares()函数 / 262

第11章 Python 基本面量化选股 / 265

11.1 初识量化选股 / 266

11.2 成长类因子选股 / 266

11.2.1 营业收入同比增长率选股 / 266

11.2.2 营业收入环比增长率选股 / 268

11.2.3 净利润同比增长率选股 / 269

11.2.4 净利润环比增长率选股 / 270

11.2.5 营业利润率选股 / 271

11.2.6 销售净利率选股 / 272

11.2.7 销售毛利率选股 / 273

11.3 规模类因子选股 / 274

11.3.1 总市值选股 / 274

11.3.2 流通市


已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

人工智能在量化交易中的应用与实战
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon