微信扫一扫,移动浏览光盘
简介
本书是P.M.Cohn的经典的三卷集代数教材的修订版第一卷,被广大读者所追捧,公认为学习代数入门教材的杰出代表。本书中涵盖了代数的所有重要结果。读者具备一定的线性代数、群和域知识,对理解本书将更有益。本卷次的目次:集合;群;格点和范畴;环和模;代数;多线性代数;域论;二次型和有序域;赋值论;交换环;无限域扩展。 读者对象:数学专业的广大师生。
目录
Preface
Conventions on Terminology
1.Sets
1.1 Finite, Countable and Uncountable Sets
1,2 Zom's Lemma and Well—ordered Sets
1.3 Graphs
2.Groups
2.1 Definition and Basic Properties
2.2 Permutation Groups
2.3 The Isomorphism Theorems
2.4 Soluble and Nilpotent Groups
2.5 Commutators
2.6 The Frattini Subgroup and the Fitting Subgroup
3.Lattices and Categories
3.1 Definitions; Modular and Distributive Lattices
3.2 Chain Conditions
3.3 Categories
3.4 Boolean Algebras
4.Rings and Modules
4.1 The Definitions Recalled
4.2 The Category of Modules over a Ring
4.3 Semisimple Modules
4.4 Matrix Rings
4.5 Direct Products of Rings
4.6 Free Modules
4.7 Projective and Injective Modules
4.8 The Tensor Product of Modules
4.9 Duality of Finite Abelian Groups
5.Algebras
5.1 Algebras; Definition and Examples
5.2 The Wedderbum Structure Theorems
5.3 The Radical
5.4 The Tensor Product of Algebras
5.5 The Regular Representation; Norm and Trace
5.6 M6bius Functions
6.Muhilinear Algebra
6.1 Graded Algebras
6.2 Free Algebras and Tensor Algebras
6.3 The Hilbert Series of a Graded Ring or Module
6.4 The Exterior Algebra on a Module
7.Field Theory
7.1 Fields and their Extensions
7.2 Splitting Fields
7.3 The Algebraic Closure of a Field
7.4 Separability
7.5 Automorphisms of Field Extensions
7.6 The Fundamental Theorem of Galois Theory
7.7 Roots of Unity
7.8 Finite Fields
7.9 Primitive Elements; Norm and Trace
7.10 Galois Theory of Equations
7.11 The Solution of Equations by Radicals
8.Quadratic Forms and Ordered Fields
8.1 Inner Product Spaces
8.2 Orthogonal Sums and Diagonalization
8.3 The Orthogonal Group of a Space
8.4 The Clifford Algebra and the Spinor Norm
8.5 Witt's Cancellation Theorem and the Witt Group of a Field
8.6 Ordered Fields
8.7 The Field of Real Numbers
8.8 Formally Real Fields
8.9 The Witt Ring of a Field
8.10 The Symplectic Group
8.11 Quadratic Forms in Characteristic Two
9.Valuation Theory
9.1 Divisibility and Valuations
9.2 Absolute Values
9.3 The p—adic Numbers
9.4 Integral Elements
9.5 Extension of Valuations
10.Commutative Rings
10.1 Operations on Ideals
10.2 Prime Ideals and Factorization
10.3 Localization
10.4 Noetherian Rings
10.5 Dedekind Domains
10.6 Modules over Dedekind Domains
10.7 Algebraic Equations
10.8 The Primary Decomposition
10.9 Dimension
10.10 The Hilbert Nullstellensatz
11.Infinite Field Extensions
11.1 Abstract Dependence Relations
11.2 Algebraic Dependence
11.3 Simple Transcendental Extensions
11.4 Separable and p—radical Extensions
11.5 Derivations
11.6 Linearly Disjoint Extensions
11.7 Composites of Fields
11.8 Infinite Algebraic Extensions
11.9 Galois Descent
11.10 Kummer Extensions
Bibliography
List of Notations
Author Index
Subject Index
Conventions on Terminology
1.Sets
1.1 Finite, Countable and Uncountable Sets
1,2 Zom's Lemma and Well—ordered Sets
1.3 Graphs
2.Groups
2.1 Definition and Basic Properties
2.2 Permutation Groups
2.3 The Isomorphism Theorems
2.4 Soluble and Nilpotent Groups
2.5 Commutators
2.6 The Frattini Subgroup and the Fitting Subgroup
3.Lattices and Categories
3.1 Definitions; Modular and Distributive Lattices
3.2 Chain Conditions
3.3 Categories
3.4 Boolean Algebras
4.Rings and Modules
4.1 The Definitions Recalled
4.2 The Category of Modules over a Ring
4.3 Semisimple Modules
4.4 Matrix Rings
4.5 Direct Products of Rings
4.6 Free Modules
4.7 Projective and Injective Modules
4.8 The Tensor Product of Modules
4.9 Duality of Finite Abelian Groups
5.Algebras
5.1 Algebras; Definition and Examples
5.2 The Wedderbum Structure Theorems
5.3 The Radical
5.4 The Tensor Product of Algebras
5.5 The Regular Representation; Norm and Trace
5.6 M6bius Functions
6.Muhilinear Algebra
6.1 Graded Algebras
6.2 Free Algebras and Tensor Algebras
6.3 The Hilbert Series of a Graded Ring or Module
6.4 The Exterior Algebra on a Module
7.Field Theory
7.1 Fields and their Extensions
7.2 Splitting Fields
7.3 The Algebraic Closure of a Field
7.4 Separability
7.5 Automorphisms of Field Extensions
7.6 The Fundamental Theorem of Galois Theory
7.7 Roots of Unity
7.8 Finite Fields
7.9 Primitive Elements; Norm and Trace
7.10 Galois Theory of Equations
7.11 The Solution of Equations by Radicals
8.Quadratic Forms and Ordered Fields
8.1 Inner Product Spaces
8.2 Orthogonal Sums and Diagonalization
8.3 The Orthogonal Group of a Space
8.4 The Clifford Algebra and the Spinor Norm
8.5 Witt's Cancellation Theorem and the Witt Group of a Field
8.6 Ordered Fields
8.7 The Field of Real Numbers
8.8 Formally Real Fields
8.9 The Witt Ring of a Field
8.10 The Symplectic Group
8.11 Quadratic Forms in Characteristic Two
9.Valuation Theory
9.1 Divisibility and Valuations
9.2 Absolute Values
9.3 The p—adic Numbers
9.4 Integral Elements
9.5 Extension of Valuations
10.Commutative Rings
10.1 Operations on Ideals
10.2 Prime Ideals and Factorization
10.3 Localization
10.4 Noetherian Rings
10.5 Dedekind Domains
10.6 Modules over Dedekind Domains
10.7 Algebraic Equations
10.8 The Primary Decomposition
10.9 Dimension
10.10 The Hilbert Nullstellensatz
11.Infinite Field Extensions
11.1 Abstract Dependence Relations
11.2 Algebraic Dependence
11.3 Simple Transcendental Extensions
11.4 Separable and p—radical Extensions
11.5 Derivations
11.6 Linearly Disjoint Extensions
11.7 Composites of Fields
11.8 Infinite Algebraic Extensions
11.9 Galois Descent
11.10 Kummer Extensions
Bibliography
List of Notations
Author Index
Subject Index
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×