微分学
副标题:无
分类号:O172.1
ISBN:9787040251562
微信扫一扫,移动浏览光盘
简介
《微分学》是H·嘉当根据他在20世纪五、六十年代所授课程编写的。书中讲述了巴拿赫空间中的微分学、微分方程及微分形式,还讲述了变分学原理与活动标架法及对曲线和曲面论的应用。该书包含了数学的一些纯粹分支和应用分支;正文由许多例子阐明,并且每一部分都包含一些程度不同的习题。
目录
上编微分学
第一章 巴拿赫空间中的微分学
1.关于巴拿赫空间及连续线性映射概念的回颐
1.1. 向量空间E上的范数
1.2. 巴拿赫空间的例子
1.3. 巴拿赫空间中的正规收敛级数
1.4.连续线性映射
1.5.连续线性映射的复合
1.6. 赋范向量空间的同构;赋范向量空间上的等价范数
1.7.空间■的例子
1.8.连续多重线性映射
1.9. 自然等距映射■
2.可微映射
2.1.可微映射的定义
2.2.复合映射的导出映射
2.3.导出映射的线性
2.4.特殊映射的导出映射
2.5.在几个巴拿赫空间的积中取值的映射
2.6.U是几个巴拿赫空间的积中开集情形
2.7.2.5及2.6段中所研究情形的组合
2.8.最后的注记:■可微性及C可微性的比较
3.有限增量定理;应用
3.1.主要定理的叙述
3.2.主要定理的特殊情形
3.3.变量在巴拿赫空间中的有限增量定理
3.4.有限增量定理续论
3.5.习题
3.6.有限增量定理的第一种应用:可微映射序列的收敛性
3.7.有限增量定理的第二种应用:偏可微性与可微性之间的关
3.8.有限增量定理的第三种应用:严格可微映射概念
4.C1类映射的局部反演.隐映射定理
4.1.C1类的微分同胚
4.2.局部反演定理
4.3.局部反演定理的证明:第一步化简
4.4.命题4.3.1的证明
4.5.定理4.4.1的证明
4.6.有限维情形下的局部反演定理
4.7.隐映射定理
5.高阶导出映射
5.1.二阶导出映射
5.2.E是乘积空间■情形
5.3.逐阶导出映射
5.4.n次可微映射的例子
5.5.泰勒公式:特别情形
5.6.泰勒公式:一般情形
6.多项式
6.1.n次齐次多项式
6.2.不一定齐次的多项式
6.3.多项式的逐次“差分”
6.4.E及F是赋范向量空间情形
7.有限展开式
7.1.定义
7.2.f在点a处n次可微情形
7.3.有限展开式的运算
7.4.两个有限展开式的复合
7.5.计算复合映射的逐阶导出映射
8.相对极大与极小
8.1.相对极小的第一个必要条件
8.2.相对极小的二阶条件
8.3.严格相对极小的充分条件
习题.
第二章微分方程
1.定义与基本定理
1.1.一阶微分方程
1.2.n阶微分方程
1.3. 近似解
1.4.例:线性微分方程.
1.5.李普希茨情形:基本引理
1.6.基本引理的应用:唯一性定理
1.7.李普希茨情形下的存在定理
1.8,是局部李普希茨情形
1.9.线性微分方程情形
1.10.对初始值的依赖性
1.11.微分方程依赖于一个参变量情形
2.线性微分方程
2.1.通解的形式
2.2.齐次线性方程研究
2.3.E有有限维情形
2.4. “带右端项的”线性方程
2.5.n阶齐次线性微分方程情形
2.6. “带右端项的”■阶线性微分方程
2.7.常系数线性微分方程
2.8.常系数方程:E有有限维情形
2.9.常系数n阶线性微分方程
3.一些问题
3.1.含一个参变量的线性自同构群
3.2.含一个参变量之群的芽
3.3.可微性问题
3.4.可微性问题(续):对初始值u的可微性
3.5.定理3.4.2的证明
3.6.对微分方程所含一个参变量的可微性
3.7.高阶可微性
3.8.二阶微分方程情形
3.9.不含自变量的微分方程
3.10. “未解出的”微分方程
4.首次积分与线性偏微分方程
4.1.微分方程组的首次积分的定义
4.2.首次积分的存在性
4.3.非齐次线性偏微分方程
4.4.例
习题
下编微分形式
第一章微分形式
1.交错多重线性映射
1.1.交错多重线性映射的定义
……
第一章 巴拿赫空间中的微分学
1.关于巴拿赫空间及连续线性映射概念的回颐
1.1. 向量空间E上的范数
1.2. 巴拿赫空间的例子
1.3. 巴拿赫空间中的正规收敛级数
1.4.连续线性映射
1.5.连续线性映射的复合
1.6. 赋范向量空间的同构;赋范向量空间上的等价范数
1.7.空间■的例子
1.8.连续多重线性映射
1.9. 自然等距映射■
2.可微映射
2.1.可微映射的定义
2.2.复合映射的导出映射
2.3.导出映射的线性
2.4.特殊映射的导出映射
2.5.在几个巴拿赫空间的积中取值的映射
2.6.U是几个巴拿赫空间的积中开集情形
2.7.2.5及2.6段中所研究情形的组合
2.8.最后的注记:■可微性及C可微性的比较
3.有限增量定理;应用
3.1.主要定理的叙述
3.2.主要定理的特殊情形
3.3.变量在巴拿赫空间中的有限增量定理
3.4.有限增量定理续论
3.5.习题
3.6.有限增量定理的第一种应用:可微映射序列的收敛性
3.7.有限增量定理的第二种应用:偏可微性与可微性之间的关
3.8.有限增量定理的第三种应用:严格可微映射概念
4.C1类映射的局部反演.隐映射定理
4.1.C1类的微分同胚
4.2.局部反演定理
4.3.局部反演定理的证明:第一步化简
4.4.命题4.3.1的证明
4.5.定理4.4.1的证明
4.6.有限维情形下的局部反演定理
4.7.隐映射定理
5.高阶导出映射
5.1.二阶导出映射
5.2.E是乘积空间■情形
5.3.逐阶导出映射
5.4.n次可微映射的例子
5.5.泰勒公式:特别情形
5.6.泰勒公式:一般情形
6.多项式
6.1.n次齐次多项式
6.2.不一定齐次的多项式
6.3.多项式的逐次“差分”
6.4.E及F是赋范向量空间情形
7.有限展开式
7.1.定义
7.2.f在点a处n次可微情形
7.3.有限展开式的运算
7.4.两个有限展开式的复合
7.5.计算复合映射的逐阶导出映射
8.相对极大与极小
8.1.相对极小的第一个必要条件
8.2.相对极小的二阶条件
8.3.严格相对极小的充分条件
习题.
第二章微分方程
1.定义与基本定理
1.1.一阶微分方程
1.2.n阶微分方程
1.3. 近似解
1.4.例:线性微分方程.
1.5.李普希茨情形:基本引理
1.6.基本引理的应用:唯一性定理
1.7.李普希茨情形下的存在定理
1.8,是局部李普希茨情形
1.9.线性微分方程情形
1.10.对初始值的依赖性
1.11.微分方程依赖于一个参变量情形
2.线性微分方程
2.1.通解的形式
2.2.齐次线性方程研究
2.3.E有有限维情形
2.4. “带右端项的”线性方程
2.5.n阶齐次线性微分方程情形
2.6. “带右端项的”■阶线性微分方程
2.7.常系数线性微分方程
2.8.常系数方程:E有有限维情形
2.9.常系数n阶线性微分方程
3.一些问题
3.1.含一个参变量的线性自同构群
3.2.含一个参变量之群的芽
3.3.可微性问题
3.4.可微性问题(续):对初始值u的可微性
3.5.定理3.4.2的证明
3.6.对微分方程所含一个参变量的可微性
3.7.高阶可微性
3.8.二阶微分方程情形
3.9.不含自变量的微分方程
3.10. “未解出的”微分方程
4.首次积分与线性偏微分方程
4.1.微分方程组的首次积分的定义
4.2.首次积分的存在性
4.3.非齐次线性偏微分方程
4.4.例
习题
下编微分形式
第一章微分形式
1.交错多重线性映射
1.1.交错多重线性映射的定义
……
微分学
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×