RF circuit design:theory and applications
副标题:无
作 者:(美)Reinhold Ludwig,(美)Gene Bogdanov著
分类号:
ISBN:9787121100956
微信扫一扫,移动浏览光盘
简介
本书从低频电路理论到射频、微波电路理论的演化过程出发,讨论以低
频电路理论为基础并结合高频电压、电流的波动特征来分析和设计射频、微
波系统的方法——微波等效电路法,使不具备电磁场理论和微波技术背景的
读者也能了解和掌握射频、微波电路的基本设计原则和方法。全书共10章,
涵盖传输线、匹配器、滤波器、混频器、放大器和振荡器等主要射频微波系
统单元的理论分析和设计问题及电路分析工具(圆图、网络参量和信号流图)
。书中例题非常有实用价值。全书大多数电路都经过ADS仿真,并提供标准
MATLAB计算程序。
本书适合作为通信、电子类学科学生的双语课程教材,也适合工程技术
人员参考。
目录
Chapter 1 Introduction/1
1.1 Importance of Radio Frequency Design/2
1.2 Dimensions and Units/5
1.3 Frequency Spectrum/7
1.4 RF Behavior of Passive Components/8
1.4.1 Resistors at High Frequency/13
1.4.2 Capacitors at High Frequency/15
1.4.3 Inductors at High Frequency/18
1.5 Chip Components and Circuit Board Considerations/20
1.5.1 Chip Resistors/20
1.5.2 Chip Capacitors/21
1.5.3 Surface-Mounted Inductors/22
1.6 RF Circuit Manufacturing Processes/22
1.7 Summary/25
Chapter 2 Transmission Line Analysis/33
2.1 Why Transmission Line Theory?/33
2.2 Examples of Transmission Lines/36
2.2.1 Two-Wire Lines/36
2.2.2 Coaxial Line/37
2.2.3 Microstrip Lines/37
2.3 Equivalent Circuit Representation/39
2.4 Theoretical Foundation/41
2.4.1 Basic Laws/41
2.5 Circuit Parameters for a Parallel-Plate Transmission Line/46
2.6 Summary of Different Line Configurations/49
2.7 General Transmission Line Equation/49
2.7.1 Kirchhoff Voltage and Current Law Representations/49
2.7.2 Traveling Voltage and Current Waves/53
2.7.3 Characteristic Impedance/53
2.7.4 Lossless Transmission Line Model/54
2.8 Microstrip Transmission Lines/54
2.9 Terminated Lossless Transmission Line/58
2.9.1 Voltage Reflection Coefficient/58
2.9.2 Propagation Constant and Phase Velocity/60
2.9.3 Standing Waves/60
2.10 Special Termination Conditions/63
2.10.1 Input Impedance of Terminated Lossless Line/63
2.10.2 Short-Circuit Terminated Transmission Line/64
2.10.3 Open-Circuited Transmission Line/66
2.10.4 Quarter-Wave Transmission Line/67
2.11 Sourced and Loaded Transmission Line/70
2.11.1 Phasor Representation of Source/70
2.11.2 Power Considerations for a Transmission Line/71
2.11.3 Input Impedance Matching/73
2.11.4 Return Loss and Insertion Loss/74
2.12 Summary/76
Chapter 3 The Smith Chart/83
3.1 From Reflection Coefficient to Load Impedance/83
3.1.1 Reflection Coefficient in Phasor Form/84
3.1.2 Normalized Impedance Equation/85
3.1.3 Parametric Reflection Coefficient Equation/86
3.1.4 Graphical Representation/89
3.2 Impedance Transformation/90
3.2.1 Impedance Transformation for General Load/90
3.2.2 Standing Wave Ratio/92
3.2.3 Special Transformation Conditions/93
3.2.4 Computer Simulations/97
3.3 Admittance Transformation/98
3.3.1 Parametric Admittance Equation/98
3.3.2 Additional Graphical Displays/101
3.4 Parallel and Series Connections/102
3.4.1 Parallel Connection of R and L Elements/102
3.4.2 Parallel Connection of R and C Elements/103
3.4.3 Series Connection of R and L Elements/103
3.4.4 Series Connection of R and C Elements/104
3.4.5 Example of a T-Network/105
3.5 Summary/109
Chapter 4 Single- and Multiport Networks/117
4.1 Basic Definitions/117
4.2 Interconnecting Networks/124
4.2.1 Series Connection of Networks/124
4.2.2 Parallel Connection of Networks/126
4.2.3 Cascading Networks/126
4.2.4 Summary of ABCD Network Representations/127
4.3 Network Properties and Applications/131
4.3.1 Interrelations between Parameter Sets/131
4.3.2 Analysis of Microwave Amplifier/132
4.4 Scattering Parameters/135
4.4.1 Definition of Scattering Parameters/136
4.4.2 Meaning of S-Parameters/138
4.4.3 Chain Scattering Matrix/140
4.4.4 Conversion between Z- and S-Parameters/142
4.4.5 Signal Flowgraph Modeling/143
4.4.6 Generalization of S-Parameters/148
4.4.7 Practical Measurements of S-Parameters/150
4.5 Summary/156
Chapter 5 An Overview of RF Filter Design/164
5.1 Basic Resonator and Filter Configurations/165
5.1.1 Filter Types and Parameters/165
5.1.2 Low-Pass Filter/168
5.1.3 High-Pass Filter/171
5.1.4 Bandpass and Bandstop Filters/172
5.1.5 Insertion Loss/177
5.2 Special Filter Realizations/180
5.2.1 Butterworth-Type Filters/180
5.2.2 Chebyshev-Type Filters/183
5.2.3 Denormalization of Standard Low-Pass Design/188
5.3 Filter Implementation/196
5.3.1 Unit Elements/197
5.3.2 Kuroda誷 Identities/198
5.3.3 Examples of Microstrip Filter Design/199
5.4 Coupled Filter/206
5.4.1 Odd and Even Mode Excitation/206
5.4.2 Bandpass Filter Section/209
5.4.3 Cascading Bandpass Filter Elements/210
5.4.4 Design Example/211
5.5 Summary/215
Chapter 6 Active RF Components/223
6.1 Semiconductor Basics/224
6.1.1 Physical Properties of Semiconductors/224
6.1.2 The pn-Junction/229
6.1.3 Schottky Contact/236
6.2 RF Diodes/239
6.2.1 Schottky Diode/239
6.2.2 PIN Diode/242
6.2.3 Varactor Diode/246
6.2.4 IMPATT Diode/248
6.2.5 Tunnel Diode/250
6.2.6 TRAPATT, BARRITT, and Gunn Diodes/251
6.3 Bipolar-Junction Transistor/252
6.3.1 Construction/252
6.3.2 Functionality/254
6.3.3 Frequency Response/259
6.3.4 Temperature Behavior/261
6.3.5 Limiting Values/264
6.3.6 Noise Performance/265
6.4 RF Field Effect Transistors/266
6.4.1 Construction/266
6.4.2 Functionality/267
6.4.3 Frequency Response/272
6.4.4 Limiting Values/272
6.5 Metal Oxide Semiconductor Transistors/273
6.5.1 Construction/273
6.5.2 Functionality/274
6.6 High Electron Mobility Transistors/275
6.6.1 Construction/276
6.6.2 Functionality/276
6.6.3 Frequency Response/279
6.7 Semiconductor Technology Trends/279
6.8 Summary/284
Chapter 7 Active RF Component Modeling/290
7.1 Diode Models/290
7.1.1 Nonlinear Diode Model/290
7.1.2 Linear Diode Model/293
7.2 Transistor Models/295
7.2.1 Large-Signal BJT Models/295
7.2.2 Small-Signal BJT Models/301
7.2.3 Large-Signal FET Models/311
7.2.4 Small-Signal FET Models/314
7.2.5 Transistor Amplifier Topologies/317
7.3 Measurement of Active Devices/318
7.3.1 DC Characterization of Bipolar Transistor/318
7.3.2 Measurements of AC Parameters of Bipolar Transistors/320
7.3.3 Measurements of Field Effect Transistor Parameters/323
7.4 Scattering Parameter Device Characterization/325
7.5 Summary/332
Chapter 8 Matching and Biasing Networks/338
8.1 Impedance Matching Using Discrete Components/338
8.1.1 Two-Component Matching Networks/338
8.1.2 Forbidden Regions, Frequency Response, and Quality Factor/346
8.1.3 T and Pi Matching Networks/354
8.2 Microstrip Line Matching Networks/357
8.2.1 From Discrete Components to Microstrip Lines/357
8.2.2 Single-Stub Matching Networks/360
8.2.3 Double-Stub Matching Networks/364
8.3 Amplifier Classes of Operation and Biasing Networks/366
8.3.1 Classes of Operation and Efficiency of Amplifiers/367
8.3.2 Bipolar Transistor Biasing Networks/371
8.3.3 Field Effect Transistor Biasing Networks/376
8.4 Summary/382
Chapter 9 RF Transistor Amplifier Design/387
9.1 Characteristics of Amplifiers/387
9.2 Amplifier Power Relations/388
9.2.1 RF Source/388
9.2.2 Transducer Power Gain/389
9.2.3 Additional Power Relations/390
9.3 Stability Considerations/392
9.3.1 Stability Circles/392
9.3.2 Unconditional Stability/395
9.3.3 Stabilization Methods/400
9.4 Constant Gain/402
9.4.1 Unilateral Design/402
9.4.2 Unilateral Figure of Merit/407
9.4.3 Bilateral Design/408
9.4.4 Operating and Available Power Gain Circles/411
9.5 Noise Figure Circles/416
9.6 Constant VSWR Circles/419
9.7 Broadband, High-Power, and Multistage Amplifiers/423
9.7.1 Broadband Amplifiers/423
9.7.2 High-Power Amplifiers/431
9.7.3 Multistage Amplifiers/434
9.8 Summary/440
Chapter 10 Oscillators and Mixers/446
10.1 Basic Oscillator Models/447
10.1.1 Feedback Oscillator/447
10.1.2 Negative Resistance Oscillator/448
10.1.3 Oscillator Phase Noise/458
10.1.4 Feedback Oscillator Design/463
10.1.5 Design Steps/465
10.1.6 Quartz Oscillators/468
10.2 High-Frequency Oscillator Configuration/470
10.2.1 Fixed-Frequency Oscillators/473
10.2.2 Dielectric Resonator Oscillators/478
10.2.3 YIG-Tuned Oscillator/482
10.2.4 Voltage-Controlled Oscillator/483
10.2.5 Gunn Element Oscillator/485
10.3 Basic Characteristics of Mixers/486
10.3.1 Basic Concepts/487
10.3.2 Frequency Domain Considerations/489
10.3.3 Single-Ended Mixer Design/490
10.3.4 Single-Balanced Mixer/497
10.3.5 Double-Balanced Mixer/498
10.3.6 Integrated Active Mixers/498
10.3.7 Image Reject Mixer/502
10.4 Summary/512
Appendix A Useful Physical Quantities and Units/517
Appendix B Skin Equation for a Cylindrical Conductor/522
Appendix C Complex Numbers/525
Appendix D Matrix Conversions/527
Appendix E Physical Parameters of Semiconductors/530
Appendix F Long and Short Diode Models/531
Appendix G Couplers/534
Appendix H Noise Analysis/540
Appendix I Introduction to MATLAB/549
1.1 Importance of Radio Frequency Design/2
1.2 Dimensions and Units/5
1.3 Frequency Spectrum/7
1.4 RF Behavior of Passive Components/8
1.4.1 Resistors at High Frequency/13
1.4.2 Capacitors at High Frequency/15
1.4.3 Inductors at High Frequency/18
1.5 Chip Components and Circuit Board Considerations/20
1.5.1 Chip Resistors/20
1.5.2 Chip Capacitors/21
1.5.3 Surface-Mounted Inductors/22
1.6 RF Circuit Manufacturing Processes/22
1.7 Summary/25
Chapter 2 Transmission Line Analysis/33
2.1 Why Transmission Line Theory?/33
2.2 Examples of Transmission Lines/36
2.2.1 Two-Wire Lines/36
2.2.2 Coaxial Line/37
2.2.3 Microstrip Lines/37
2.3 Equivalent Circuit Representation/39
2.4 Theoretical Foundation/41
2.4.1 Basic Laws/41
2.5 Circuit Parameters for a Parallel-Plate Transmission Line/46
2.6 Summary of Different Line Configurations/49
2.7 General Transmission Line Equation/49
2.7.1 Kirchhoff Voltage and Current Law Representations/49
2.7.2 Traveling Voltage and Current Waves/53
2.7.3 Characteristic Impedance/53
2.7.4 Lossless Transmission Line Model/54
2.8 Microstrip Transmission Lines/54
2.9 Terminated Lossless Transmission Line/58
2.9.1 Voltage Reflection Coefficient/58
2.9.2 Propagation Constant and Phase Velocity/60
2.9.3 Standing Waves/60
2.10 Special Termination Conditions/63
2.10.1 Input Impedance of Terminated Lossless Line/63
2.10.2 Short-Circuit Terminated Transmission Line/64
2.10.3 Open-Circuited Transmission Line/66
2.10.4 Quarter-Wave Transmission Line/67
2.11 Sourced and Loaded Transmission Line/70
2.11.1 Phasor Representation of Source/70
2.11.2 Power Considerations for a Transmission Line/71
2.11.3 Input Impedance Matching/73
2.11.4 Return Loss and Insertion Loss/74
2.12 Summary/76
Chapter 3 The Smith Chart/83
3.1 From Reflection Coefficient to Load Impedance/83
3.1.1 Reflection Coefficient in Phasor Form/84
3.1.2 Normalized Impedance Equation/85
3.1.3 Parametric Reflection Coefficient Equation/86
3.1.4 Graphical Representation/89
3.2 Impedance Transformation/90
3.2.1 Impedance Transformation for General Load/90
3.2.2 Standing Wave Ratio/92
3.2.3 Special Transformation Conditions/93
3.2.4 Computer Simulations/97
3.3 Admittance Transformation/98
3.3.1 Parametric Admittance Equation/98
3.3.2 Additional Graphical Displays/101
3.4 Parallel and Series Connections/102
3.4.1 Parallel Connection of R and L Elements/102
3.4.2 Parallel Connection of R and C Elements/103
3.4.3 Series Connection of R and L Elements/103
3.4.4 Series Connection of R and C Elements/104
3.4.5 Example of a T-Network/105
3.5 Summary/109
Chapter 4 Single- and Multiport Networks/117
4.1 Basic Definitions/117
4.2 Interconnecting Networks/124
4.2.1 Series Connection of Networks/124
4.2.2 Parallel Connection of Networks/126
4.2.3 Cascading Networks/126
4.2.4 Summary of ABCD Network Representations/127
4.3 Network Properties and Applications/131
4.3.1 Interrelations between Parameter Sets/131
4.3.2 Analysis of Microwave Amplifier/132
4.4 Scattering Parameters/135
4.4.1 Definition of Scattering Parameters/136
4.4.2 Meaning of S-Parameters/138
4.4.3 Chain Scattering Matrix/140
4.4.4 Conversion between Z- and S-Parameters/142
4.4.5 Signal Flowgraph Modeling/143
4.4.6 Generalization of S-Parameters/148
4.4.7 Practical Measurements of S-Parameters/150
4.5 Summary/156
Chapter 5 An Overview of RF Filter Design/164
5.1 Basic Resonator and Filter Configurations/165
5.1.1 Filter Types and Parameters/165
5.1.2 Low-Pass Filter/168
5.1.3 High-Pass Filter/171
5.1.4 Bandpass and Bandstop Filters/172
5.1.5 Insertion Loss/177
5.2 Special Filter Realizations/180
5.2.1 Butterworth-Type Filters/180
5.2.2 Chebyshev-Type Filters/183
5.2.3 Denormalization of Standard Low-Pass Design/188
5.3 Filter Implementation/196
5.3.1 Unit Elements/197
5.3.2 Kuroda誷 Identities/198
5.3.3 Examples of Microstrip Filter Design/199
5.4 Coupled Filter/206
5.4.1 Odd and Even Mode Excitation/206
5.4.2 Bandpass Filter Section/209
5.4.3 Cascading Bandpass Filter Elements/210
5.4.4 Design Example/211
5.5 Summary/215
Chapter 6 Active RF Components/223
6.1 Semiconductor Basics/224
6.1.1 Physical Properties of Semiconductors/224
6.1.2 The pn-Junction/229
6.1.3 Schottky Contact/236
6.2 RF Diodes/239
6.2.1 Schottky Diode/239
6.2.2 PIN Diode/242
6.2.3 Varactor Diode/246
6.2.4 IMPATT Diode/248
6.2.5 Tunnel Diode/250
6.2.6 TRAPATT, BARRITT, and Gunn Diodes/251
6.3 Bipolar-Junction Transistor/252
6.3.1 Construction/252
6.3.2 Functionality/254
6.3.3 Frequency Response/259
6.3.4 Temperature Behavior/261
6.3.5 Limiting Values/264
6.3.6 Noise Performance/265
6.4 RF Field Effect Transistors/266
6.4.1 Construction/266
6.4.2 Functionality/267
6.4.3 Frequency Response/272
6.4.4 Limiting Values/272
6.5 Metal Oxide Semiconductor Transistors/273
6.5.1 Construction/273
6.5.2 Functionality/274
6.6 High Electron Mobility Transistors/275
6.6.1 Construction/276
6.6.2 Functionality/276
6.6.3 Frequency Response/279
6.7 Semiconductor Technology Trends/279
6.8 Summary/284
Chapter 7 Active RF Component Modeling/290
7.1 Diode Models/290
7.1.1 Nonlinear Diode Model/290
7.1.2 Linear Diode Model/293
7.2 Transistor Models/295
7.2.1 Large-Signal BJT Models/295
7.2.2 Small-Signal BJT Models/301
7.2.3 Large-Signal FET Models/311
7.2.4 Small-Signal FET Models/314
7.2.5 Transistor Amplifier Topologies/317
7.3 Measurement of Active Devices/318
7.3.1 DC Characterization of Bipolar Transistor/318
7.3.2 Measurements of AC Parameters of Bipolar Transistors/320
7.3.3 Measurements of Field Effect Transistor Parameters/323
7.4 Scattering Parameter Device Characterization/325
7.5 Summary/332
Chapter 8 Matching and Biasing Networks/338
8.1 Impedance Matching Using Discrete Components/338
8.1.1 Two-Component Matching Networks/338
8.1.2 Forbidden Regions, Frequency Response, and Quality Factor/346
8.1.3 T and Pi Matching Networks/354
8.2 Microstrip Line Matching Networks/357
8.2.1 From Discrete Components to Microstrip Lines/357
8.2.2 Single-Stub Matching Networks/360
8.2.3 Double-Stub Matching Networks/364
8.3 Amplifier Classes of Operation and Biasing Networks/366
8.3.1 Classes of Operation and Efficiency of Amplifiers/367
8.3.2 Bipolar Transistor Biasing Networks/371
8.3.3 Field Effect Transistor Biasing Networks/376
8.4 Summary/382
Chapter 9 RF Transistor Amplifier Design/387
9.1 Characteristics of Amplifiers/387
9.2 Amplifier Power Relations/388
9.2.1 RF Source/388
9.2.2 Transducer Power Gain/389
9.2.3 Additional Power Relations/390
9.3 Stability Considerations/392
9.3.1 Stability Circles/392
9.3.2 Unconditional Stability/395
9.3.3 Stabilization Methods/400
9.4 Constant Gain/402
9.4.1 Unilateral Design/402
9.4.2 Unilateral Figure of Merit/407
9.4.3 Bilateral Design/408
9.4.4 Operating and Available Power Gain Circles/411
9.5 Noise Figure Circles/416
9.6 Constant VSWR Circles/419
9.7 Broadband, High-Power, and Multistage Amplifiers/423
9.7.1 Broadband Amplifiers/423
9.7.2 High-Power Amplifiers/431
9.7.3 Multistage Amplifiers/434
9.8 Summary/440
Chapter 10 Oscillators and Mixers/446
10.1 Basic Oscillator Models/447
10.1.1 Feedback Oscillator/447
10.1.2 Negative Resistance Oscillator/448
10.1.3 Oscillator Phase Noise/458
10.1.4 Feedback Oscillator Design/463
10.1.5 Design Steps/465
10.1.6 Quartz Oscillators/468
10.2 High-Frequency Oscillator Configuration/470
10.2.1 Fixed-Frequency Oscillators/473
10.2.2 Dielectric Resonator Oscillators/478
10.2.3 YIG-Tuned Oscillator/482
10.2.4 Voltage-Controlled Oscillator/483
10.2.5 Gunn Element Oscillator/485
10.3 Basic Characteristics of Mixers/486
10.3.1 Basic Concepts/487
10.3.2 Frequency Domain Considerations/489
10.3.3 Single-Ended Mixer Design/490
10.3.4 Single-Balanced Mixer/497
10.3.5 Double-Balanced Mixer/498
10.3.6 Integrated Active Mixers/498
10.3.7 Image Reject Mixer/502
10.4 Summary/512
Appendix A Useful Physical Quantities and Units/517
Appendix B Skin Equation for a Cylindrical Conductor/522
Appendix C Complex Numbers/525
Appendix D Matrix Conversions/527
Appendix E Physical Parameters of Semiconductors/530
Appendix F Long and Short Diode Models/531
Appendix G Couplers/534
Appendix H Noise Analysis/540
Appendix I Introduction to MATLAB/549
RF circuit design:theory and applications
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×