微信扫一扫,移动浏览光盘
简介
目录
序
前言
第1 章推荐系统概述1
1.1 推荐系统发展历史/2
1.1.1 基于内容的推荐算法/2
1.1.2 基于协同过滤的推荐算法/3
1.1.3 基于深度学习的推荐算法/5
1.2 推荐系统原理/6
1.2.1 机器学习视角下的推荐系统/6
1.2.2 深度学习推荐系统新范式/12
1.2.3 推荐系统常见架构/15
1.3 推荐系统应用价值/17
1.3.1 推荐系统的业务价值/17
1.3.2 推荐、搜索与广告/19
1.3.3 推荐系统的行业应用/20
1.4 小结/22
第2 章经典推荐算法/25
2.1 基于内容的推荐算法/26
2.1.1 基于结构化内容的推荐/27
2.1.2 基于非结构化内容的推荐/33
2.1.3 基于内容推荐的优势与局限/41
2.2 基于协同过滤的推荐算法/42
2.2.1 基于记忆的协同过滤算法/42
2.2.2 矩阵分解方法与因子分解机方法/50
2.3 小结/58
第3 章深度学习基础/59
3.1 神经网络与前馈计算/60
3.2 反向传播算法/61
3.3 多种深度神经网络/64
3.3.1 卷积神经网络/64
3.3.2 循环神经网络/68
3.3.3 注意力机制/72
3.3.4 序列建模与预训练/75
3.4 小结/78
第4 章基于深度学习的推荐算法/79
4.1 深度学习与协同过滤/80
4.1.1 基于受限玻尔兹曼机的协同过滤/80
4.1.2 基于自编码器的协同过滤/82
4.1.3 深度学习与矩阵分解/84
4.1.4 基于邻域的深度协同过滤/87
4.2 深度学习与特征交互/88
4.2.1 AFM 模型/88
4.2.2 PNN 模型/89
4.2.3 Wide & Deep 模型/91
4.2.4 DeepFM 模型/93
4.2.5 DCN 模型/94
4.2.6 xDeepFM 模型/96
4.2.7 AutoInt 模型/99
4.2.8 特征交互的其他思路/100
4.3 图表示学习与推荐系统/100
4.3.1 图嵌入和图神经网络基础/101
4.3.2 图神经网络与协同过滤/106
4.3.3 图神经网络与社会化推荐/110
4.4 序列与基于会话的推荐/114
4.4.1 序列推荐的动机、定义与分类/114
4.4.2 序列推荐算法的分类/117
4.4.3 基于循环神经网络的序列推荐/122
4.4.4 基于非自回归神经网络的序列建模/125
4.4.5 基于自注意力机制的序列推荐/127
4.4.6 基于记忆神经网络的序列推荐/129
4.4.7 用户、物品双序列建模/133
4.5 结合知识图谱的推荐系统/134
4.5.1 加强用户--物品交互建模/135
4.5.2 图谱建模与物品推荐的联合学习/141
4.5.3 知识图谱增强物品的表示/146
4.5.4 可解释性/151
4.6 基于强化学习的推荐算法/158
4.6.1 基于多臂老虎机的推荐算法/160
4.6.2 强化学习基础/162
4.6.3 基于强化学习的推荐算法/ 164
4.6.4 深度强化学习的建模与优化/166
4.7 小结/170
第5 章推荐系统前沿话题/171
5.1 推荐算法研究热点/172
5.1.1 基于对话的推荐/172
5.1.2 因果推荐/173
5.1.3 常识推荐/174
5.2 推荐系统应用挑战/175
5.2.1 多源数据融合/175
5.2.2 可扩展性/176
5.2.3 功能性评估/178
5.2.4 冷启动问题/179
5.3 负责任的推荐/180
5.3.1 用户隐私/180
5.3.2 可解释性/183
5.3.3 算法偏见/187
5.4 小结/189
第6 章推荐系统实践/191
6.1 工业级推荐系统实现与架构/192
6.1.1 工业级推荐系统的基本特征/192
6.1.2 推荐系统的常见架构/193
6.1.3 推荐系统的工业实现/196
6.2 推荐系统典型应用实践/198
6.2.1 数据管理与预处理/201
6.2.2 算法选择与模型训练/208
6.2.3 评估指标与评估方式/230
6.3 基于云平台的推荐系统开发与运维/236
6.3.1 基于云平台的推荐系统的优点/236
6.3.2 基于云平台的推荐系统开发与运维/237
6.4 总结/241
第7 章总结与展望/243
参考文献247
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问