Python机器学习入门

副标题:无

作   者:安德烈亚斯·穆勒

分类号:

ISBN:9787564169060

微信扫一扫,移动浏览光盘

简介


机器学习已经成为许多商业应用和研究项目的一个组成部分,同时拥有广泛研究团队的大型公司也投入到这个领域。如果你使用Python,即使是初学者,本书也将教你如何构建自己的机器学习解决方案。有了目前可用的丰富数据,机器学习应用程序只受限于你的想象力。
你将学习使用Python和scikit-learn库所需的全部步骤来创建成功的机器学习应用程序。《Python机器学习入门(影印版)(英文版)》作者安德烈亚斯· 穆勒、莎拉·圭多专注于使用机器学习算法的实践方面,而不会过多讨论其背后的数学原理。熟悉NumPy和matplotlib库将有助于你从本书中获得*多信息。
有了这本书,你会学到: 机器学习的基本概念和应用程序 各种广泛使用的机器学习算法的优点和缺点如何呈现通过机器学习处理后的数据,包括需要关注的数据方面 于模型评估和参数调整的**方法 用于连接模型和封装工作流的管道的概念处理文本数据的方法,包括特定于文本的处理技术 改善你的机器学习和数据科学技能的建议

目录


Preface1. IntroductionWhy Machine Learning?Problems Machine Learning Can SolveKnowing Your Task and Knowing Your DataWhy Python?scikit-learnInstalling scikit-learnEssential Libraries and ToolsJupyter NotebookNumPySciPymatplotlibpandasmglearnPython 2 Versus Python 3Versions Used in this BookA First Application: Classifying Iris SpeciesMeet the DataMeasuring Success: Training and Testing DataFirst Things First: Look at Your DataBuilding Your First Model: k-Nearest NeighborsMaking PredictionsEvaluating the ModelSummary and Outlook2. Supervised LearningClassification and RegressionGeneralization, Overfitting, and UnderfittingRelation of Model Complexity to Dataset SizeSupervised Machine Learning AlgorithmsSome Sample Datasetsk-Nearest NeighborsLinear ModelsNaive Bayes ClassifiersDecision TreesEnsembles of Decision TreesKernelized Support Vector MachinesNeural Networks (Deep Learning)Uncertainty Estimates from ClassifiersThe Decision FunctionPredicting ProbabilitiesUncertainty in Multiclass ClassificationSummary and Outlook3. Unsupervised Learning and PreprocessingTypes of Unsupervised LearningChallenges in Unsupervised LearningPreprocessing and ScalingDifferent Kinds of PreprocessingApplying Data TransformationsScaling Training and Test Data the Same WayThe Effect of Preprocessing on Supervised LearningDimensionality Reduction, Feature Extraction, and Manifold LearningPrincipal Component Analysis (PCA)Non-Negative Matrix Factorization (NMF)Manifold Learning with t-SNEClusteringk-Means ClusteringAgglomerative ClusteringDBSCANComparing and Evaluating Clustering AlgorithmsSummary of Clustering MethodsSummary and Outlook4. Representing Data and Engineering FeaturesCategorical VariablesOne-Hot-Encoding (Dummy Variables)Numbers Can Encode CategoricalsBinning, Discretization, Linear Models, and TreesInteractions and PolynomialsUnivariate Nonlinear TransformationsAutomatic Feature SelectionUnivariate StatisticsModel-Based Feature SelectionIterative Feature SelectionUtilizing Expert KnowledgeSummary and Outlook5. Model Evaluation and ImprovementCross-ValidationCross-Validation in scikit-learnBenefits of Cross-ValidationStratified k-Fold Cross-Validation and Other StrategiesGrid SearchSimple Grid SearchThe Danger of Overfitting the Parameters and the Validation SetGrid Search with Cross-ValidationEvaluation Metrics and ScoringKeep the End Goal in MindMetrics for Binary ClassificationMetrics for Multiclass ClassificationRegression MetricsUsing Evaluation Metrics in Model SelectionSummary and Outlook6. Algorithm Chains and PipelinesParameter Selection with PreprocessingBuilding PipelinesUsing Pipelines in Grid SearchesThe General Pipeline InterfaceConvenient Pipeline Creation with make_pipelineAccessing Step AttributesAccessing Attributes in a Grid-Searched PipelineGrid-Searching Preprocessing Steps and Model ParametersGrid-Searching Which Model To UseSummary and Outlook7. Working with Text DataTypes of Data Represented as StringsExample Application: Sentiment Analysis of Movie ReviewsRepresenting Text Data as a Bag of WordsApplying Bag-of-Words to a Toy DatasetBag-of-Words for Movie ReviewsStopwordsRescaling the Data with tf-idfInvestigating Model CoefficientsBag-of-Words with More Than One Word (n-Grams)Advanced Tokenization, Stemming, and LemmatizationTopic Modeling and Document ClusteringLatent Dirichlet AllocationSummary and Outlook8. Wrapping UpApproaching a Machine Learning ProblemHumans in the LoopFrom Prototype to ProductionTesting Production SystemsBuilding Your Own EstimatorWhere to Go from HereTheoryOther Machine Learning Frameworks and PackagesRanking, Recommender Systems, and Other Kinds of LearningProbabilistic Modeling, Inference, and Probabilistic ProgrammingNeural NetworksScaling to Larger DatasetsHoning Your SkillsConclusionIndex
【深度学习】

已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

Python机器学习入门
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon