Nanobiotechnology & nanobiosciences /
副标题:无
分类号:
ISBN:9789814241380
微信扫一扫,移动浏览光盘
简介
Nicolini (biophysics, U. of Genoa, Italy) defines and reviews the major areas of nanobiotechnology and nanobiosciences and their recent developments. He covers the basic principles and main applications of nanobiotechnology as an emerging field, including the status of new materials by organic and biological nanotechnology and their applications, nanoscale probes, and applications in science and health in the areas of protein crystallography, medicine, genomics, proteomics, cell science, mechanics, optics, and magnetism. The final chapter addresses applications to industry and energy. He focuses on technology that has been accomplished in his laboratory at the Nanoworld Institute in Genoa over the last eight years. Annotation 漏2010 Book News, Inc., Portland, OR (booknews.com)
目录
Preface p. vii
1 Nanoscale Materials p. 1
1.1 Produced Via LB Technology p. 2
1.1.1 Cells p. 2
1.1.2 Proteins p. 5
1.1.2.1 Light sensitives p. 6
1.1.2.2 Metal-containings p. 8
1.1.2.3 Others p. 12
1.1.3 Genes and Oligonucleotides p. 14
1.1.4 Lipids and Archaea p. 16
1.2 Produced Via Organic Chemistry p. 17
1.2.1 Conductive polymers p. 18
1.2.1.1 Amphipilic conjugated polymers p. 22
1.2.2 Carbon nanotubes and their nanocomposites p. 25
1.2.2.1 Interactions between conjugated polymers and single-WN p. 32
1.2.2.2 SWNT for hydrogen storage p. 33
1.2.3 Nanoparticles p. 34
1.3 Produced Via LB Nanostructuring p. 37
1.3.1 Langmuir-Blodgett p. 39
1.3.1.1 Protective plate p. 41
1.3.1.2 Heat-proof and long range stability p. 43
1.4 Produced Via APA Nanostructuring p. 48
1.4.1 Focus ion beam p. 49
2 Nanoscale Probes p. 54
2.1 Surface Potential p. 54
2.2 Atomic Force Microscopy p. 58
2.2.1 AFM spectroscopy p. 64
2.2.2 Scanning tunneling microscopy p. 65
2.3 Nuclear Magnetic Resonance p. 67
2.3.1 Circular dichroism p. 69
2.4 Brewster-Angle Microscopy p. 70
2.4.1 Ellipsometry p. 71
2.5 Electrochemistry p. 72
2.6 Infrared Spectroscopy p. 74
2.7 Nanogravimetry p. 77
2.7.1 Quality factor p. 79
2.8 Biomolecular Microarrays p. 81
2.8.1 Gene expression via DNASER p. 82
2.8.2 Protein expression via Nucleic Acid Programmable Array p. 86
2.9 Biophysical Informatics p. 90
2.9.1 Bioinformatics p. 91
2.9.2 Biophysical molecular modelling p. 93
2.9.2.1 Three-dimensional structure of octopus rhodpsin p. 94
2.9.2.2 Three-dimensional structure of cytochrome P450scc p. 96
2.9.2.3 Protein crystallization p. 97
2.9.2.4 Nanobiodevice implementation p. 100
2.10 Mass Spectrometry p. 101
2.10.1 Mass spectrometry of label-free NAPPA p. 105
2.11 Synchrotron Radiation p. 106
2.11.1 Diffraction p. 109
2.11.2 Grazing Incidence Small Angle X-ray Scattering p. 111
3 Nanoscale Applications in Health and Science p. 118
3.1 Nanobiocrystallography p. 118
3.1.1 Radiation resistance p. 127
3.1.2 New protein structures p. 128
3.1.3 Three-dimensional engineering p. 132
3.1.4 Basics of crystal formation p. 135
3.1.4.1 Cytochrome P450scc p. 136
3.1.4.2 Lysozyme p. 145
3.2 Nanomedicine p. 148
3.2.1 Carbon nanotubes biocompatibility and drug delivery p. 148
3.2.2 Photosensitization of titanium dental implants p. 152
3.2.3 Biopolymer sequencing and drug screening chip p. 155
3.3 Nanogenomics p. 158
3.3.1 Human T lymphocytes cell cycle p. 158
3.3.2 Organ transplants p. 167
3.3.3 Osteogenesis p. 173
3.4 Nanoproteomics p. 174
3.4.1 Cell cycle p. 175
3.4.2 Cell transformation and differentiation p. 180
3.5 Nanomechanics and Nanooptics p. 183
3.5.1 Nanocontacts for addressing single-molecules p. 183
3.5.2 Nanofocussing p. 191
3.5.3 Optical tweezers p. 193
3.5.4 Magnetism p. 195
3.6 Cell Nanobioscience p. 197
3.6.1 Nucleosome core p. 197
3.6.1.1 DNA deformation p. 201
3.6.1.2 Water and ions p. 201
3.6.2 Protein stability to heat and radiation p. 202
3.6.2.1 Bioinformatic analysis p. 204
3.6.2.2 Structural comparisons p. 207
3.6.2.3 Structural comparisons of homologous thermophilic/mesophilic pairs p. 207
3.6.2.4 Water comparisons of homologous thermophilic/mesophilic pairs p. 209
3.6.2.5 Detailed comparison of mesophilic versus thermophilic thioredoxin p. 212
4 Nanoscale Applications in Industry and Energy Compatible with Environment p. 219
4.1 Nanobioelectronics p. 220
4.1.1 Nanosensors p. 220
4.1.1.1 Protein-based nanosensors p. 220
4.1.1.2 Organic nanosensors p. 237
4.1.2 Passive elements p. 246
4.1.2.1 Resistors p. 247
4.1.2.2 Capacitors p. 250
4.1.2.3 Wires p. 254
4.1.3 Active elements p. 255
4.1.3.1 Schottky diode p. 256
4.1.3.2 Led p. 257
4.1.3.3 Optical filtering and holography p. 261
4.1.3.4 Displays p. 265
4.1.3.5 Monoelectronic transistors p. 267
4.1.4 Quantum dots and quantum computing p. 271
4.2 Nanoenergetics Compatible with Environment p. 275
4.2.1 Photovoltaic cells p. 275
4.2.1.1 Reaction centers-based p. 278
4.2.1.2 Purple-membrane based p. 279
4.2.2 Batteries p. 282
4.2.2.1 Lithium ion batteries elements p. 285
4.2.2.2 The cathode p. 285
4.2.2.3 The anode p. 288
4.2.2.4 The electrolyte p. 291
4.2.3 Hydrogen storage and fuel cells p. 296
4.3 Nanobiocatalysis p. 301
4.3.1 Bioreactors p. 306
4.3.1.1 From lab scale to industrial scale p. 309
4.3.2 Bioactuators p. 312
Bibliography p. 313
Index p. 363
1 Nanoscale Materials p. 1
1.1 Produced Via LB Technology p. 2
1.1.1 Cells p. 2
1.1.2 Proteins p. 5
1.1.2.1 Light sensitives p. 6
1.1.2.2 Metal-containings p. 8
1.1.2.3 Others p. 12
1.1.3 Genes and Oligonucleotides p. 14
1.1.4 Lipids and Archaea p. 16
1.2 Produced Via Organic Chemistry p. 17
1.2.1 Conductive polymers p. 18
1.2.1.1 Amphipilic conjugated polymers p. 22
1.2.2 Carbon nanotubes and their nanocomposites p. 25
1.2.2.1 Interactions between conjugated polymers and single-WN p. 32
1.2.2.2 SWNT for hydrogen storage p. 33
1.2.3 Nanoparticles p. 34
1.3 Produced Via LB Nanostructuring p. 37
1.3.1 Langmuir-Blodgett p. 39
1.3.1.1 Protective plate p. 41
1.3.1.2 Heat-proof and long range stability p. 43
1.4 Produced Via APA Nanostructuring p. 48
1.4.1 Focus ion beam p. 49
2 Nanoscale Probes p. 54
2.1 Surface Potential p. 54
2.2 Atomic Force Microscopy p. 58
2.2.1 AFM spectroscopy p. 64
2.2.2 Scanning tunneling microscopy p. 65
2.3 Nuclear Magnetic Resonance p. 67
2.3.1 Circular dichroism p. 69
2.4 Brewster-Angle Microscopy p. 70
2.4.1 Ellipsometry p. 71
2.5 Electrochemistry p. 72
2.6 Infrared Spectroscopy p. 74
2.7 Nanogravimetry p. 77
2.7.1 Quality factor p. 79
2.8 Biomolecular Microarrays p. 81
2.8.1 Gene expression via DNASER p. 82
2.8.2 Protein expression via Nucleic Acid Programmable Array p. 86
2.9 Biophysical Informatics p. 90
2.9.1 Bioinformatics p. 91
2.9.2 Biophysical molecular modelling p. 93
2.9.2.1 Three-dimensional structure of octopus rhodpsin p. 94
2.9.2.2 Three-dimensional structure of cytochrome P450scc p. 96
2.9.2.3 Protein crystallization p. 97
2.9.2.4 Nanobiodevice implementation p. 100
2.10 Mass Spectrometry p. 101
2.10.1 Mass spectrometry of label-free NAPPA p. 105
2.11 Synchrotron Radiation p. 106
2.11.1 Diffraction p. 109
2.11.2 Grazing Incidence Small Angle X-ray Scattering p. 111
3 Nanoscale Applications in Health and Science p. 118
3.1 Nanobiocrystallography p. 118
3.1.1 Radiation resistance p. 127
3.1.2 New protein structures p. 128
3.1.3 Three-dimensional engineering p. 132
3.1.4 Basics of crystal formation p. 135
3.1.4.1 Cytochrome P450scc p. 136
3.1.4.2 Lysozyme p. 145
3.2 Nanomedicine p. 148
3.2.1 Carbon nanotubes biocompatibility and drug delivery p. 148
3.2.2 Photosensitization of titanium dental implants p. 152
3.2.3 Biopolymer sequencing and drug screening chip p. 155
3.3 Nanogenomics p. 158
3.3.1 Human T lymphocytes cell cycle p. 158
3.3.2 Organ transplants p. 167
3.3.3 Osteogenesis p. 173
3.4 Nanoproteomics p. 174
3.4.1 Cell cycle p. 175
3.4.2 Cell transformation and differentiation p. 180
3.5 Nanomechanics and Nanooptics p. 183
3.5.1 Nanocontacts for addressing single-molecules p. 183
3.5.2 Nanofocussing p. 191
3.5.3 Optical tweezers p. 193
3.5.4 Magnetism p. 195
3.6 Cell Nanobioscience p. 197
3.6.1 Nucleosome core p. 197
3.6.1.1 DNA deformation p. 201
3.6.1.2 Water and ions p. 201
3.6.2 Protein stability to heat and radiation p. 202
3.6.2.1 Bioinformatic analysis p. 204
3.6.2.2 Structural comparisons p. 207
3.6.2.3 Structural comparisons of homologous thermophilic/mesophilic pairs p. 207
3.6.2.4 Water comparisons of homologous thermophilic/mesophilic pairs p. 209
3.6.2.5 Detailed comparison of mesophilic versus thermophilic thioredoxin p. 212
4 Nanoscale Applications in Industry and Energy Compatible with Environment p. 219
4.1 Nanobioelectronics p. 220
4.1.1 Nanosensors p. 220
4.1.1.1 Protein-based nanosensors p. 220
4.1.1.2 Organic nanosensors p. 237
4.1.2 Passive elements p. 246
4.1.2.1 Resistors p. 247
4.1.2.2 Capacitors p. 250
4.1.2.3 Wires p. 254
4.1.3 Active elements p. 255
4.1.3.1 Schottky diode p. 256
4.1.3.2 Led p. 257
4.1.3.3 Optical filtering and holography p. 261
4.1.3.4 Displays p. 265
4.1.3.5 Monoelectronic transistors p. 267
4.1.4 Quantum dots and quantum computing p. 271
4.2 Nanoenergetics Compatible with Environment p. 275
4.2.1 Photovoltaic cells p. 275
4.2.1.1 Reaction centers-based p. 278
4.2.1.2 Purple-membrane based p. 279
4.2.2 Batteries p. 282
4.2.2.1 Lithium ion batteries elements p. 285
4.2.2.2 The cathode p. 285
4.2.2.3 The anode p. 288
4.2.2.4 The electrolyte p. 291
4.2.3 Hydrogen storage and fuel cells p. 296
4.3 Nanobiocatalysis p. 301
4.3.1 Bioreactors p. 306
4.3.1.1 From lab scale to industrial scale p. 309
4.3.2 Bioactuators p. 312
Bibliography p. 313
Index p. 363
Nanobiotechnology & nanobiosciences /
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×