Discrete mathematics and its applications
副标题:无
作 者:(美)Kenneth H. Rosen著;袁崇义[等]译
分类号:O158
ISBN:9787111203261
微信扫一扫,移动浏览光盘
简介
本书是介绍离散数学理论和方法的经典教材,已经成为全球500多所大
学的指定教材,获得了极大的成功。中文版也已被国内大学广泛采用为教
材。第5版在前四版的基础上做了大量的改进,使其成为更有效的教学工具
。
本书可作为1至2个学期的离散数学课入门教材,适用于数学、计算机
科学、计算机工程等专业的学生。
第5版的特点
·易入门:实践证明本书对初学者来说易读易懂
·灵活:本教材为灵活使用做了精心设计,各章对其前面内容的依赖
降到最小
·广泛的课堂实践:本书已在500多所大学得到了多年实践检验
·实例:书中有700多个实例,用于阐明概念,联系不同内容,并引入
各种应用
·应用:本书涉及的应用领域很广,包括计算机科学、数据网络、心
理学、化学、工程、语言学、生物学、商业和互联网
·历史资料:本书以脚注的形式给出了60多位数学家和计算机科学家
的传记
·关键术语和结沦:每一章后面都列出了本章的关键术语和结论
·练习、复习题、补充练习:正文中有3 500多道练习,每章最后都有
一组更多>>
目录
目录
出版者的话
专家指导委员会
作者介绍
前言
第1章 基础:逻辑和证明、集合、函数
1.1 逻辑
1.1.1 引言
1.1.2 命题
1.1.3 蕴含
1.1.4 逻辑运算符的优先级
1.1.5 翻译语言的句子
1.1.6 系统规范说明
1.1.7 布尔检索
1.1.8 逻辑难题
1.1.9 逻辑运算和位运算
练习
1.2 命题等价
1.2.1 引言
1.2.2 逻辑等价
练习
1.3 谓词和量词
1.3.1 引言
1.3.2 量词
1.3.3 绑定变量
1.3.4 否定
1.3.5 翻译语句为逻辑表达式
1.3.6 选自Lewis Carroll的例子
1.3.7 逻辑程序设计
练习
1.4 嵌套量词
1.4.1 引言
1.4.2 翻译涉及嵌套量词的语句
1.4.3 将语句翻译成逻辑表达式
1.4.4 否定嵌套量词
1.4.5 量词的顺序
练习
1.5 证明方法
1.5.1 引言
1.5.2 推理规则
1.5.3 有效的论证
1.5.4 消解
1.5.5 谬误
1.5.6 带量词命题的推理规则
1.5.7 证明定理的方法
1.5.8 定理与量词
1.5.9 证明中的错误
1.5.10 关于证明的一些评注
练习
1.6 集合
1.6.1 引言
1.6.2 幂集合
1.6.3 笛卡儿积
1.6.4 使用带量词的集合符号
练习
1.7 集合运算
1.7.1 引言
1.7.2 集合恒等式
1.7.3 扩展的并集和交集
1.7.4 计算机表示集合的方式
练习
1.8 函数
1.8.1 引言
1.8.2 一对一函数和映上函数
1.8.3 反函数和函数组合
1.8.4 函数的图像
1.8.5 几个重要的函数
练习
关键术语和结果
复习题
补充练习
算机题目
算和研究
写作目的
第2章 基础:算法、整数和矩阵
2.1 算法
2.1.1 引言
2.1.2 搜索算法
2.1.3 排序
2.1.4 贪心算法
练习
2.2 函数的增长
2.2.1 引言
2.2.2 大Ο记号
2.2.3 一些重要的大Ο结果
2.2.4 函数组合的增长
2.2.5 大Ω与大Θ记号
练习
2.3 算法的复杂度
2.3.1 引言
2.3.2 时间复杂度
2.3.3 理解算法的复杂度
练习
2.4 整数和除法
2.4.1 引言
2.4.2 除法
2.4.3 素数
2.4.4 整除算法
2.4.5 最大公约数和最小公倍数
2.4.6 同余算术
2.4.7 同余应用
2.4.8 密码学
练习
2.5 整数和算法
2.5.1 引言
2.5.2 整数表示
2.5.3 整数运算算法
2.5.4 同余幂
2.5.5 欧几里得算法
练习
2.6 数论应用
2.6.1 引言
2.6.2 若干有用的结果
2.6.3 线性同余
2.6.4 中国剩余定理
2.6.5 大整数计算机算术
2.6.6 伪素数
2.6.7 公钥密码学
2.6.8 RSA加密
2.6.9 RSA解密
2.6.10 用RSA作为公钥系统
练习
2.7 矩阵
2.7.1 引言
2.7.2 矩阵算术
2.7.3 矩阵乘法算法
2.7.4 矩阵转置和幂
2.7.5 0-1矩阵
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
第3章 数学推理、归纳与递归
3.1 证明策略
3.1.1 引言
3.1.2 证明策略
3.1.3 猜想与证明
3.1.4 猜想与反例
3.1.5 停机问题
3.1.6 其他证明方法
练习
3.2 序列与求和
3.2.1 引言
3.2.2 序列
3.2.3 特殊的整数序列
3.2.4 求和
3.2.5 基数
练习
3.3 数学归纳法
3.3.1 引言
3.3.2 数学归纳法
3.3.3 数学归纳法证明的例子
3.3.4 强归纳法
3.3.5 良序性
3.3.6 为什么数学归纳法有效
练习
3.4 递归定义与结构归纳法
3.4.1 引言
3.4.2 递归地定义函数
3.4.3 递归地定义集合与结构
3.4.4 结构归纳法
3.4.5 广义归纳法
练习
3.5 递归算法
3.5.1 引言
3.5.2 递归与迭代
3.5.3 归并排序
练习
3.6 程序正确性
3.6.1 引言
3.6.2 程序验证
3.6.3 推理规则
3.6.4 条件语句
3.6.5 循环不变量
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
第4章 计数
4.1 计数的基础
4.1.1 引言
4.1.2 基本的计数原则
4.1.3 比较复杂的计数问题
4.1.4 容斥原理
4.1.5 树图
练习
4.2 鸽巢原理
4.2.1 引言
4.2.2 广义鸽巢原理
4.2.3 巧妙使用鸽巢原理
练习
4.3 排列与组合
4.3.1 引言
4.3.2 排列
4.3.3 组合
练习
4.4 二项式系数
4.4.1 二项式定理
4.4.2 帕斯卡恒等式和三角形
4.4.3 其他的二项式系数恒等式
练习
4.5 一般性的排列和组合
4.5.1 引言
4.5.2 有重复的排列
4.5.3 有重复的组合
4.5.4 具有不可区别物体的集合的排列
4.5.5 把物体放入盒子
练习
4.6 生成排列和组合
4.6.1 引言
4.6.2 生成排列
4.6.3 生成组合
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
第5章 离散概率
5.1 离散概率引论
5.1.1 引言
5.1.2 有限概率
5.1.3 事件组合的概率
5.1.4 概率的推理
练习
5.2 概率论
5.2.1 引言
5.2.2 概率指派
5.2.3 事件的组合
5.2.4 条件概率
5.2.5 独立性
5.2.6 伯努利试验与二项分布
5.2.7 随机变量
5.2.8 生日问题
5.2.9 蒙特卡罗算法
?5.2.10 概率方法
练习
5.3 期望值和方差
5.3.1 引言
5.3.2 期望值
5.3.3 期望的线性性质
5.3.4 平均情形下的计算复杂度
5.3.5 几何分布
5.3.6 独立随机变量
5.3.7 方差
5.3.8 切比雪夫不等式
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
第6章 高级计数技术
6.1 递推关系
6.1.1 引言
6.1.2 递推关系
6.1.3 用递推关系构造模型
练习
6.2 求解递推关系
6.2.1 引言
6.2.2 求解常系数线性齐次递推关系
6.2.3 常系数线性非齐次的递推关系
练习
6.3 分治算法和递推关系
6.3.1 引言
6.3.2 分治递推关系
练习
6.4 生成函数
6.4.1 引言
6.4.2 关于幂级数的有用事实
6.4.3 计数问题与生成函数
6.4.4 使用生成函数求解递推关系
6.4.5 使用生成函数证明恒等式
练习
6.5 容斥
6.5.1 引言
6.5.2 容斥原理
练习
6.6 容斥原理的应用
6.6.1 引言
6.6.2 容斥原理的另一种形式
6.6.3 埃拉托色尼筛
6.6.4 映上函数的个数
6.6.5 错位排列
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
第7章 关系
7.1 关系及其性质
7.1.1 引言
7.1.2 函数作为关系
7.1.3 集合的关系
7.1.4 关系的性质
7.1.5 关系的组合
练习
7.2 n元关系及其应用
7.2.1 引言
7.2.2 n元关系
7.2.3 数据库和关系
7.2.4 n元关系的运算
7.2.5 SQL
练习
7.3 关系的表示
7.3.1 引言
7.3.2 用矩阵表示关系
7.3.3 用图表示关系
练习
7.4 关系的闭包
7.4.1 引言
7.4.2 闭包
7.4.3 有向图的路径
7.4.4 传递闭包
7.4.5 沃舍尔算法
练习
7.5 等价关系
7.5.1 引言
7.5.2 等价关系
7.5.3 等价类
7.5.4 等价类与划分
练习
7.6 偏序
7.6.1 引言
7.6.2 字典顺序
7.6.3 哈塞图
7.6.4 极大元素与极小元素
7.6.5 格
7.6.6 拓扑排序
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
第8章 图
8.1 概述
8.1.1 图的种类
8.1.2 图模型
练习
8.2 图的术语
8.2.1 引言
8.2.2 基本术语
8.2.3 一些特殊的简单图
8.2.4 偶图
8.2.5 特殊类型的图的一些应用
8.2.6 从旧图到新图
练习
8.3 图的表示和图的同构
8.3.1 引言
8.3.2 图的表示
8.3.3 邻接矩阵
8.3.4 关联矩阵
8.3.5 图的同构
练习
8.4 连通性
8.4.1 引言
8.4.2 通路
8.4.3 无向图的连通性
8.4.4 有向图的连通性
8.4.5 通路与同构
8.4.6 计算顶点之间的通路数
练习
8.5 欧拉通路与哈密顿通路
8.5.1 引言
8.5.2 欧拉通路与欧拉回路
8.5.3 哈密顿通路与哈密顿回路
练习
8.6 最短通路问题
8.6.1 引言
8.6.2 最短通路算法
8.6.3 旅行商问题
练习
8.7 可平面图
8.7.1 引言
8.7.2 欧拉公式
8.7.3 库拉图斯基定理
练习
8.8 图着色
8.8.1 引言
8.8.2 图着色的应用
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
第9章 树
9.1 概述
9.1.1 树作为模型
9.1.2 树的性质
练习
9.2 树的应用
9.2.1 引言
9.2.2 二叉搜索树
9.2.3 决策树
9.2.4 前缀码
?9.2.5 博弈树
练习
9.3 树的遍历
9.3.1 引言
9.3.2 通用地址系统
9.3.3 遍历算法
9.3.4 中缀、前缀和后缀记法
练习
9.4 生成树
9.4.1 引言
9.4.2 深度优先搜索
9.4.3 宽度优先搜索
9.4.4 回溯
9.4.5 有向图中的深度优先搜索
练习
9.5 最小生成树
9.5.1 引言
9.5.2 最小生成树算法
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
第10章 布尔代数
10.1 布尔函数
10.1.1 引言
10.1.2 布尔表达式和布尔函数
10.1.3 布尔代数恒等式
10.1.4 对偶性
10.1.5 布尔代数的抽象定义
练习
10.2 布尔函数的表示
10.2.1 积之和展开式
10.2.2 函数完全性
练习
10.3 逻辑门电路
10.3.1 引言
10.3.2 门的组合
10.3.3 电路的例子
10.3.4 加法器
练习
10.4 电路的极小化
10.4.1 引言
10.4.2 卡诺图
10.4.3 无需在意的条件
10.4.4 奎因-莫可拉斯基方法
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
第11章 计算模型
11.1 语言和文法
11.1.1 引言
11.1.2 短语结构文法
11.1.3 短语结构文法的类型
11.1.4 派生树
11.1.5 巴克斯-诺尔范式
练习
11.2 带输出的有限状态机
11.2.1 引言
11.2.2 带输出的有限状态机
练习
11.3 不带输出的有限状态机
11.3.1 引言
11.3.2 串的集合
11.3.3 有限状态自动机
练习
11.4 语言的识别
11.4.1 引言
11.4.2 正则集合
11.4.3 克莱因定理
11.4.4 正则集合和正则文法
11.4.5 一个不能由有限状态自动机识别的集合
11.4.6 一些更强大的机器
练习
11.5 图灵机
11.5.1 引言
11.5.2 图灵机的定义
11.5.3 用图灵机识别集合
11.5.4 用图灵机计算函数
11.5.5 不同类型的图灵机
11.5.6 丘奇-图灵论题
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
附录A 指数函数和对数函数
附录B 伪代码
奇数练习题答案
推荐读物
参考文献
出版者的话
专家指导委员会
作者介绍
前言
第1章 基础:逻辑和证明、集合、函数
1.1 逻辑
1.1.1 引言
1.1.2 命题
1.1.3 蕴含
1.1.4 逻辑运算符的优先级
1.1.5 翻译语言的句子
1.1.6 系统规范说明
1.1.7 布尔检索
1.1.8 逻辑难题
1.1.9 逻辑运算和位运算
练习
1.2 命题等价
1.2.1 引言
1.2.2 逻辑等价
练习
1.3 谓词和量词
1.3.1 引言
1.3.2 量词
1.3.3 绑定变量
1.3.4 否定
1.3.5 翻译语句为逻辑表达式
1.3.6 选自Lewis Carroll的例子
1.3.7 逻辑程序设计
练习
1.4 嵌套量词
1.4.1 引言
1.4.2 翻译涉及嵌套量词的语句
1.4.3 将语句翻译成逻辑表达式
1.4.4 否定嵌套量词
1.4.5 量词的顺序
练习
1.5 证明方法
1.5.1 引言
1.5.2 推理规则
1.5.3 有效的论证
1.5.4 消解
1.5.5 谬误
1.5.6 带量词命题的推理规则
1.5.7 证明定理的方法
1.5.8 定理与量词
1.5.9 证明中的错误
1.5.10 关于证明的一些评注
练习
1.6 集合
1.6.1 引言
1.6.2 幂集合
1.6.3 笛卡儿积
1.6.4 使用带量词的集合符号
练习
1.7 集合运算
1.7.1 引言
1.7.2 集合恒等式
1.7.3 扩展的并集和交集
1.7.4 计算机表示集合的方式
练习
1.8 函数
1.8.1 引言
1.8.2 一对一函数和映上函数
1.8.3 反函数和函数组合
1.8.4 函数的图像
1.8.5 几个重要的函数
练习
关键术语和结果
复习题
补充练习
算机题目
算和研究
写作目的
第2章 基础:算法、整数和矩阵
2.1 算法
2.1.1 引言
2.1.2 搜索算法
2.1.3 排序
2.1.4 贪心算法
练习
2.2 函数的增长
2.2.1 引言
2.2.2 大Ο记号
2.2.3 一些重要的大Ο结果
2.2.4 函数组合的增长
2.2.5 大Ω与大Θ记号
练习
2.3 算法的复杂度
2.3.1 引言
2.3.2 时间复杂度
2.3.3 理解算法的复杂度
练习
2.4 整数和除法
2.4.1 引言
2.4.2 除法
2.4.3 素数
2.4.4 整除算法
2.4.5 最大公约数和最小公倍数
2.4.6 同余算术
2.4.7 同余应用
2.4.8 密码学
练习
2.5 整数和算法
2.5.1 引言
2.5.2 整数表示
2.5.3 整数运算算法
2.5.4 同余幂
2.5.5 欧几里得算法
练习
2.6 数论应用
2.6.1 引言
2.6.2 若干有用的结果
2.6.3 线性同余
2.6.4 中国剩余定理
2.6.5 大整数计算机算术
2.6.6 伪素数
2.6.7 公钥密码学
2.6.8 RSA加密
2.6.9 RSA解密
2.6.10 用RSA作为公钥系统
练习
2.7 矩阵
2.7.1 引言
2.7.2 矩阵算术
2.7.3 矩阵乘法算法
2.7.4 矩阵转置和幂
2.7.5 0-1矩阵
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
第3章 数学推理、归纳与递归
3.1 证明策略
3.1.1 引言
3.1.2 证明策略
3.1.3 猜想与证明
3.1.4 猜想与反例
3.1.5 停机问题
3.1.6 其他证明方法
练习
3.2 序列与求和
3.2.1 引言
3.2.2 序列
3.2.3 特殊的整数序列
3.2.4 求和
3.2.5 基数
练习
3.3 数学归纳法
3.3.1 引言
3.3.2 数学归纳法
3.3.3 数学归纳法证明的例子
3.3.4 强归纳法
3.3.5 良序性
3.3.6 为什么数学归纳法有效
练习
3.4 递归定义与结构归纳法
3.4.1 引言
3.4.2 递归地定义函数
3.4.3 递归地定义集合与结构
3.4.4 结构归纳法
3.4.5 广义归纳法
练习
3.5 递归算法
3.5.1 引言
3.5.2 递归与迭代
3.5.3 归并排序
练习
3.6 程序正确性
3.6.1 引言
3.6.2 程序验证
3.6.3 推理规则
3.6.4 条件语句
3.6.5 循环不变量
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
第4章 计数
4.1 计数的基础
4.1.1 引言
4.1.2 基本的计数原则
4.1.3 比较复杂的计数问题
4.1.4 容斥原理
4.1.5 树图
练习
4.2 鸽巢原理
4.2.1 引言
4.2.2 广义鸽巢原理
4.2.3 巧妙使用鸽巢原理
练习
4.3 排列与组合
4.3.1 引言
4.3.2 排列
4.3.3 组合
练习
4.4 二项式系数
4.4.1 二项式定理
4.4.2 帕斯卡恒等式和三角形
4.4.3 其他的二项式系数恒等式
练习
4.5 一般性的排列和组合
4.5.1 引言
4.5.2 有重复的排列
4.5.3 有重复的组合
4.5.4 具有不可区别物体的集合的排列
4.5.5 把物体放入盒子
练习
4.6 生成排列和组合
4.6.1 引言
4.6.2 生成排列
4.6.3 生成组合
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
第5章 离散概率
5.1 离散概率引论
5.1.1 引言
5.1.2 有限概率
5.1.3 事件组合的概率
5.1.4 概率的推理
练习
5.2 概率论
5.2.1 引言
5.2.2 概率指派
5.2.3 事件的组合
5.2.4 条件概率
5.2.5 独立性
5.2.6 伯努利试验与二项分布
5.2.7 随机变量
5.2.8 生日问题
5.2.9 蒙特卡罗算法
?5.2.10 概率方法
练习
5.3 期望值和方差
5.3.1 引言
5.3.2 期望值
5.3.3 期望的线性性质
5.3.4 平均情形下的计算复杂度
5.3.5 几何分布
5.3.6 独立随机变量
5.3.7 方差
5.3.8 切比雪夫不等式
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
第6章 高级计数技术
6.1 递推关系
6.1.1 引言
6.1.2 递推关系
6.1.3 用递推关系构造模型
练习
6.2 求解递推关系
6.2.1 引言
6.2.2 求解常系数线性齐次递推关系
6.2.3 常系数线性非齐次的递推关系
练习
6.3 分治算法和递推关系
6.3.1 引言
6.3.2 分治递推关系
练习
6.4 生成函数
6.4.1 引言
6.4.2 关于幂级数的有用事实
6.4.3 计数问题与生成函数
6.4.4 使用生成函数求解递推关系
6.4.5 使用生成函数证明恒等式
练习
6.5 容斥
6.5.1 引言
6.5.2 容斥原理
练习
6.6 容斥原理的应用
6.6.1 引言
6.6.2 容斥原理的另一种形式
6.6.3 埃拉托色尼筛
6.6.4 映上函数的个数
6.6.5 错位排列
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
第7章 关系
7.1 关系及其性质
7.1.1 引言
7.1.2 函数作为关系
7.1.3 集合的关系
7.1.4 关系的性质
7.1.5 关系的组合
练习
7.2 n元关系及其应用
7.2.1 引言
7.2.2 n元关系
7.2.3 数据库和关系
7.2.4 n元关系的运算
7.2.5 SQL
练习
7.3 关系的表示
7.3.1 引言
7.3.2 用矩阵表示关系
7.3.3 用图表示关系
练习
7.4 关系的闭包
7.4.1 引言
7.4.2 闭包
7.4.3 有向图的路径
7.4.4 传递闭包
7.4.5 沃舍尔算法
练习
7.5 等价关系
7.5.1 引言
7.5.2 等价关系
7.5.3 等价类
7.5.4 等价类与划分
练习
7.6 偏序
7.6.1 引言
7.6.2 字典顺序
7.6.3 哈塞图
7.6.4 极大元素与极小元素
7.6.5 格
7.6.6 拓扑排序
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
第8章 图
8.1 概述
8.1.1 图的种类
8.1.2 图模型
练习
8.2 图的术语
8.2.1 引言
8.2.2 基本术语
8.2.3 一些特殊的简单图
8.2.4 偶图
8.2.5 特殊类型的图的一些应用
8.2.6 从旧图到新图
练习
8.3 图的表示和图的同构
8.3.1 引言
8.3.2 图的表示
8.3.3 邻接矩阵
8.3.4 关联矩阵
8.3.5 图的同构
练习
8.4 连通性
8.4.1 引言
8.4.2 通路
8.4.3 无向图的连通性
8.4.4 有向图的连通性
8.4.5 通路与同构
8.4.6 计算顶点之间的通路数
练习
8.5 欧拉通路与哈密顿通路
8.5.1 引言
8.5.2 欧拉通路与欧拉回路
8.5.3 哈密顿通路与哈密顿回路
练习
8.6 最短通路问题
8.6.1 引言
8.6.2 最短通路算法
8.6.3 旅行商问题
练习
8.7 可平面图
8.7.1 引言
8.7.2 欧拉公式
8.7.3 库拉图斯基定理
练习
8.8 图着色
8.8.1 引言
8.8.2 图着色的应用
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
第9章 树
9.1 概述
9.1.1 树作为模型
9.1.2 树的性质
练习
9.2 树的应用
9.2.1 引言
9.2.2 二叉搜索树
9.2.3 决策树
9.2.4 前缀码
?9.2.5 博弈树
练习
9.3 树的遍历
9.3.1 引言
9.3.2 通用地址系统
9.3.3 遍历算法
9.3.4 中缀、前缀和后缀记法
练习
9.4 生成树
9.4.1 引言
9.4.2 深度优先搜索
9.4.3 宽度优先搜索
9.4.4 回溯
9.4.5 有向图中的深度优先搜索
练习
9.5 最小生成树
9.5.1 引言
9.5.2 最小生成树算法
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
第10章 布尔代数
10.1 布尔函数
10.1.1 引言
10.1.2 布尔表达式和布尔函数
10.1.3 布尔代数恒等式
10.1.4 对偶性
10.1.5 布尔代数的抽象定义
练习
10.2 布尔函数的表示
10.2.1 积之和展开式
10.2.2 函数完全性
练习
10.3 逻辑门电路
10.3.1 引言
10.3.2 门的组合
10.3.3 电路的例子
10.3.4 加法器
练习
10.4 电路的极小化
10.4.1 引言
10.4.2 卡诺图
10.4.3 无需在意的条件
10.4.4 奎因-莫可拉斯基方法
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
第11章 计算模型
11.1 语言和文法
11.1.1 引言
11.1.2 短语结构文法
11.1.3 短语结构文法的类型
11.1.4 派生树
11.1.5 巴克斯-诺尔范式
练习
11.2 带输出的有限状态机
11.2.1 引言
11.2.2 带输出的有限状态机
练习
11.3 不带输出的有限状态机
11.3.1 引言
11.3.2 串的集合
11.3.3 有限状态自动机
练习
11.4 语言的识别
11.4.1 引言
11.4.2 正则集合
11.4.3 克莱因定理
11.4.4 正则集合和正则文法
11.4.5 一个不能由有限状态自动机识别的集合
11.4.6 一些更强大的机器
练习
11.5 图灵机
11.5.1 引言
11.5.2 图灵机的定义
11.5.3 用图灵机识别集合
11.5.4 用图灵机计算函数
11.5.5 不同类型的图灵机
11.5.6 丘奇-图灵论题
练习
关键术语和结果
复习题
补充练习
计算机题目
计算和研究
写作题目
附录A 指数函数和对数函数
附录B 伪代码
奇数练习题答案
推荐读物
参考文献
Discrete mathematics and its applications
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×