高等数学.上册

副标题:无

作   者:陈克东主编

分类号:O13

ISBN:9787113088217

微信扫一扫,移动浏览光盘

简介

本书以“数学思想方法是数学教学的灵魂”为指导思想,突出高等数学的基本思想、基本理论和基本方法。

目录


第0章 预备知识
0.1 集合
0.1.1 集合的概念
0.1.2 集合的运算
0.1.3 集族、直积
0.1.4 区间和邻域
0.2 实数系
0.2.1 实数系的完备性
0.2.2 上界与下界
0.2.3 上确界与下确界
0.3 映射
0.3.1 映射的概念
0.3.2 单射 满射 一一映射
0.3.3 逆映射 复合映射
0.4 一元函数
0.4.1 函数 分段函数
0.4.2 函数的几个特性
0.4.3 复合函数
0.4.4 基本初等函数
0.4.5 初等函数
0.5 极坐标系
0.5.1 极坐标系的基本概念
0.5.2 曲线的极坐标方程
0.5.3 极坐标与直角坐标的关系
习题
第1章 极限与连续
1.1 数列的极限
1.1.1 极限的思想方法
1.1.2 数列的极限
1.1.3 数列极限的几个定理
习题1.1
1.2 函数的极限
1.2.1 函数在无穷大处的极限
1.2.2 函数在有限点处的极限
习题1.2
1.3 极限的运算法则
1.3.1 无穷小
1.3.2 无穷小的运算性质
1.3.3 无穷大
1.3.4 极限的运算法则
习题1.3
1.4 极限存在准则与两个重要极限
1.4.1 夹逼准则
1.4.2 单调有界收敛准则
习题1.4
1.5 无穷小的比较
习题1.5
1.6 函数的连续性与间断点
1.6.1 函数的连续性
1.6.2 函数的间断点
1.6.3 连续函数的运算
习题1.6
1.7 闭区间上连续函数的性质
习题1.7
第1章总习题
第2章 导数与微分
2.1 导数的概念
2.1.1 引例
2.1.2 导数的定义
2.1.3 用定义计算导数举例
2.1.4 函数的可导性与连续性的关系
习题2.1
2.2 函数的求导法则
2.2.1 导数的四则运算法则
2.2.2 反函数的导数
2.2.3 复合函数的导数
习题2.2
2.3 高阶导数
习题2.3
2.4 隐函数的导数和由参数方程所确定的函数的导数
2.4.1 隐函数的导数
2.4.2 由参数方程所确定的函数的导数
2.4.3 相关变化率
习题2.4
2.5 函数的微分
2.5.1 微分的概念
2.5.2 基本初等函数的微分公式与微分运算法则
2.5.3 微分的应用
习题2.5
第2章总习题
第3章 微分中值定理与导数的应用
3.1 微分中值定理
3.1.1 费马定理与罗尔中值定理
3.1.2 拉格朗日中值定理
3.1.3 柯西中值定理
习题3.1
3.2 洛必达法则
3.2.1 0/0型未定式
3.2.2 ∞/∞型未定式
3.2.3 其他类型的未定式
习题3.2
3.3 泰勒公式
习题3.3
3.4 函数的单调性与函数图形凹凸性的判别方法
3.4.1 函数单调性的判别方法
3.4.2 函数图形凹凸性的判别方法
习题3.4
3.5 函数的极值与最值
3.5.1 函数的极值及其求法
3.5.2 最大值与最小值问题
习题3.5
3.6 函数图形的描绘
习题3.6
3.7 弧微分与曲率
3.7.1 弧微分
3.7.2 曲率公式
3.7.3 曲率圆与曲率半径
习题3.7
第3章总习题
第4章 不定积分
4.1 不定积分的概念与性质
4.1.1 原函数与不定积分的概念
4.1.2 基本积分表
4.1.3 不定积分的性质
习题4.1
4.2 不定积分的换元积分法
4.2.1 不定积分的第一类换元法
4.2.2 不定积分的第二类换元法
习题4.2
4.3 不定积分的分部积分法
习题4.3
4.4 有理函数和三角函数有理式的积分
4.4.1 有理函数的积分
4.4.2 三角函数有理式的积分
习题4.4
第4章总习题
第5章 定积分及其应用
5.1 定积分概念与性质
5.1.1 引例
5.1.2 定积分的定义
5.1.3 定积分的性质
习题5.1
5.2 微积分基本定理
5.2.1 积分上限的函数及其导数
5.2.2 牛顿-莱布尼兹公式
习题5.2
5.3 定积分的换元积分法与分部积分法
5.3.1 定积分的换元积分法
5.3.2 定积分的分部积分法
习题5.3
5.4 广义积分
5.4.1 无穷限的广义积分
5.4.2 无界函数的广义积分
习题5.4
5.5 定积分的几何应用
5.5.1 定积分的微元法
5.5.2 平面图形的面积
5.5.3 体积
5.5.4 平面曲线的弧长
习题5.5
5.6 定积分的物理应用
5.6.1 变力沿直线所作的功
5.6.2 水压力
5.6.3 引力
习题5.6
第5章总习题
第6章 向量代数与空间解析几何
6.1 向量代数的基本概念
6.1.1 空间直角坐标系
6.1.2 向量与向量的表示
6.1.3 向量的加法与数乘运算
习题6.1
6.2 向量的乘法运算
6.2.1 向量的投影、方向余弦
6.2.2 向量的数量积
6.2.3 向量的向量积
6.2.4 向量的混合积
习题6.2
6.3 平面及其方程
6.3.1 平面的点法式方程
6.3.2 平面的一般式方程
6.3.3 平面的截距式方程
6.3.4 平面与平面的位置关系
习题6.3
6.4 空间直线及其方程
6.4.1 空间直线的点向式方程
6.4.2 空间直线的参数式方程
6.4.3 空间直线的一般式方程
6.4.4 两条空间直线的夹角
6.4.5 直线与平面的关系
习题6.4
6.5 曲面
6.5.1 柱面
6.5.2 旋转曲面
6.5.3 二次曲面
习题6.5
6.6 空间曲线
6.6.1 空间曲线及其方程
6.6.2 空间曲线在坐标面上的投影
习题6.6
第6章总习题
第7章 微积分学实验Ⅰ
7.1 Mathematica软件简介
7.1.1 Mathematica的启动与基本操作
7.1.2 数值计算
7.1.3 赋值与替换
7.1.4 基本数学函数与代数式变换算符
7.1.5 自定义函数
7.1.6 表的运算
7.1.7 图形绘制
7.1.8 极限、求导、积分与极值
7.1.9 求和运算、泰勒展开(幂级数展开)
7.1.10 代数方程及微分方程求解
7.1.11 数据拟合
7.1.12 程序设计初步
7.2 函数作图与模拟
7.2.1 问题
7.2.2 实验目的
7.2.3 预备知识
7.2.4 实验内容与要求
7.2.5 操作提示
习题7.2
7.3 割圆术、生长模型
7.3.1 问题
7.3.2 实验目的
7.3.3 预备知识
7.3.4 实验内容与要求
7.3.5 操作提示
习题7.3
7.4 陈酒出售的最佳时机问题
7.4.1 问题
7.4.2 实验目的
7.4.3 预备知识
7.4.4 实验内容与要求
7.4.5 操作提示
习题7.4
7.5 泰勒展开与e的计算
7.5.1 问题
7.5.2 实验目的
7.5.3 预备知识
7.5.4 实验内容与要求
7.5.5 操作提示
习题7.5
7.6 方程近似解的求法
7.6.1 问题
7.6.2 实验目的
7.6.3 预备知识
7.6.4 实验内容与要求
7.6.5 操作提示
习题7.6
7.7 定积分的近似计算
7.7.1 问题
7.7.2 实验目的
7.7.3 预备知识
7.7.4 实验内容与要求
7.7.5 操作提示
习题7.7
附录A 几种常用的曲线
附录B 积分表
参考文献
习题答案与提示

已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

高等数学.上册
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    loading icon