Modern introduction to surface plasmons:theory, Mathematica modeling and applications
副标题:无
作 者:(美)萨里德(D. Sarid),(美)查利纳(W. Challener)著
分类号:
ISBN:9787301219775
微信扫一扫,移动浏览光盘
简介
本书是影印版英文专著,原书由剑桥大学出版社于2010年出版。本书介绍了表面等离子激元 同时也对负折射率材料平面界面的导模进行了介绍。通过解析或数值的方法,本书研究了平薄膜、光栅、纳米线和纳米粒子的局域化或者传播的表面等离子激元的物理。本书还系统地分析了具有正或负介电常数和磁导率的材料之间的界面上的导模。表面等离子激元物理的应用也在书中做了介绍。
目录
Preface
1 Introduction
2 Electromagnetics of planar surface waves
2.1 Introduction
2.2 Topics in electromagnetic theory
2.3 Media type notation
2.4 Mode and symmetry notation
2.5 Wave vector notation
2.6 Single-interface TE mode fields
2.7 Single-interface TM mode fields
2.8 Single-interface generalized fields
2.9 Double-interface TE mode fields
2.10 Double-interface TM mode fields
2.11 Double-interface generalized fields
2.12 Wave impedance
2.13 Single-interface mode solution
2.14 Double-interface mode solution
2.15 Poynting vector
2.16 Prism coupling
2.17 Reflectivity and Goos-H~inchen shift
2.18 Summary
2.19 Exercises
References
3 Single-interface modes in the microwave regime
3.1 Introduction
3.2 Dispersion of Em and μm
3.3 Single-interface lossless-mode solutions
3.4 Lossy modes in the Otto configuration
3.5 Lossy modes in the Kretschmann configuration
3.6 Summary
3.7 Exercises
References
4 Single-interface lossless modes in Er'-μ' parameter space
4.1 Introduction
4.2 System
4.3 Mode equation solutions
4.4 Fields and local power flow
4.5 Summary
4.6 Exercises
References
5 Double-interface lossless modes in Er'-μ' parameter space
5.1 Introduction
5.2 System
5.3 Mode equation solutions
5.4 Complete mode equation solutions: dR= 500 nm
5.5 Complete mode equation solutions: dR= 25 nm
5.6 Summary
5.7 Exercises
References
6 Single-interface surface plasmons
6.1 Introduction
6.2 System
6.3 Mode equation solutions
6.4 Fields and local power flow
6.5 Propagating electric fields
6.6 Surface charge density and fields
6.7 Modes in the Otto and Kretschmann configurations
6.8 Summary
6.9 Exercises
References
7 Double-interface surface plasmons in symmetric guides
7. l Introduction
7.2 System
7.3 Mode equation solutions
7.4 Fields and local power flow
7.5 Fields and phasors
7.6 Surface charge density and fields
7.7 Modes in the general prism coupling configuration
7.8 Summary
7.9 Exercises
References
Quasi-one-dimensional surface plasmons
8.1 Introduction
8.2 Propagating surface plasmons on metallic wires
of circular cross section
8.3 Propagating surface plasmons on metallic wires
of noncircular cross section
8.4 Propagating surface plasmons on hollow cylindrical
waveguides
8.5 Propagating surface plasmons on hollow cylindrical
shells
8.6 Excitation of surface plasmons on nanowires
with plane waves
8.7 Nanowires with noncircular cross sections
8.8 Summary
8.9 Exercises
References
Localized surface plasmons
9.1 Nanoparticles
9.2 Nanoholes or nanovoids
9.3 Nanoshells
9.4 Other nanoparticle shapes
9.5 Dual nanoparticles
9.6 Summary
9.7 Exercises
References
10 Techniques for exciting surface plasmons
10.1 Introduction
10.2 Otto configuration
10.3 Kretschmann configuration
10.4 Diffraction gratings and Wood's anomalies
10.5 Surface roughness
10.6 End-fire coupling
10.7 Near-field launching
10.8 Summary
10.9 Appendix: description of grating code (See the
online supplemental material at www.cambridge.org/
9780521767170.)
10.10 Exercises
References
11 Plasmonic materials
11.1 Introduction
11.2 Real metals
11.3 Drude metals
11.4 Summary
11.5 Exercises
References
12 Applications
12.1 Introduction
12.2 Measuring the optical constants of metals
12.3 Chemical and biological sensors
12.4 Near-field microscopy
12.5 Surface-enhanced Raman spectroscopy
12.6 Nonlinear optics
12.7 Heat-assisted magnetic recording
12.8 Nanophotonics
12.9 Cancer detection and treatment
12.10 Other applications
12.11 Summary
12.12 Exercises
References
Appendix A
A. 1 Finite-difference time-domain method
A.2 Poynting vector and local power flow
References
Index
1 Introduction
2 Electromagnetics of planar surface waves
2.1 Introduction
2.2 Topics in electromagnetic theory
2.3 Media type notation
2.4 Mode and symmetry notation
2.5 Wave vector notation
2.6 Single-interface TE mode fields
2.7 Single-interface TM mode fields
2.8 Single-interface generalized fields
2.9 Double-interface TE mode fields
2.10 Double-interface TM mode fields
2.11 Double-interface generalized fields
2.12 Wave impedance
2.13 Single-interface mode solution
2.14 Double-interface mode solution
2.15 Poynting vector
2.16 Prism coupling
2.17 Reflectivity and Goos-H~inchen shift
2.18 Summary
2.19 Exercises
References
3 Single-interface modes in the microwave regime
3.1 Introduction
3.2 Dispersion of Em and μm
3.3 Single-interface lossless-mode solutions
3.4 Lossy modes in the Otto configuration
3.5 Lossy modes in the Kretschmann configuration
3.6 Summary
3.7 Exercises
References
4 Single-interface lossless modes in Er'-μ' parameter space
4.1 Introduction
4.2 System
4.3 Mode equation solutions
4.4 Fields and local power flow
4.5 Summary
4.6 Exercises
References
5 Double-interface lossless modes in Er'-μ' parameter space
5.1 Introduction
5.2 System
5.3 Mode equation solutions
5.4 Complete mode equation solutions: dR= 500 nm
5.5 Complete mode equation solutions: dR= 25 nm
5.6 Summary
5.7 Exercises
References
6 Single-interface surface plasmons
6.1 Introduction
6.2 System
6.3 Mode equation solutions
6.4 Fields and local power flow
6.5 Propagating electric fields
6.6 Surface charge density and fields
6.7 Modes in the Otto and Kretschmann configurations
6.8 Summary
6.9 Exercises
References
7 Double-interface surface plasmons in symmetric guides
7. l Introduction
7.2 System
7.3 Mode equation solutions
7.4 Fields and local power flow
7.5 Fields and phasors
7.6 Surface charge density and fields
7.7 Modes in the general prism coupling configuration
7.8 Summary
7.9 Exercises
References
Quasi-one-dimensional surface plasmons
8.1 Introduction
8.2 Propagating surface plasmons on metallic wires
of circular cross section
8.3 Propagating surface plasmons on metallic wires
of noncircular cross section
8.4 Propagating surface plasmons on hollow cylindrical
waveguides
8.5 Propagating surface plasmons on hollow cylindrical
shells
8.6 Excitation of surface plasmons on nanowires
with plane waves
8.7 Nanowires with noncircular cross sections
8.8 Summary
8.9 Exercises
References
Localized surface plasmons
9.1 Nanoparticles
9.2 Nanoholes or nanovoids
9.3 Nanoshells
9.4 Other nanoparticle shapes
9.5 Dual nanoparticles
9.6 Summary
9.7 Exercises
References
10 Techniques for exciting surface plasmons
10.1 Introduction
10.2 Otto configuration
10.3 Kretschmann configuration
10.4 Diffraction gratings and Wood's anomalies
10.5 Surface roughness
10.6 End-fire coupling
10.7 Near-field launching
10.8 Summary
10.9 Appendix: description of grating code (See the
online supplemental material at www.cambridge.org/
9780521767170.)
10.10 Exercises
References
11 Plasmonic materials
11.1 Introduction
11.2 Real metals
11.3 Drude metals
11.4 Summary
11.5 Exercises
References
12 Applications
12.1 Introduction
12.2 Measuring the optical constants of metals
12.3 Chemical and biological sensors
12.4 Near-field microscopy
12.5 Surface-enhanced Raman spectroscopy
12.6 Nonlinear optics
12.7 Heat-assisted magnetic recording
12.8 Nanophotonics
12.9 Cancer detection and treatment
12.10 Other applications
12.11 Summary
12.12 Exercises
References
Appendix A
A. 1 Finite-difference time-domain method
A.2 Poynting vector and local power flow
References
Index
Modern introduction to surface plasmons:theory, Mathematica modeling and applications
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×