高维因子模型的极大似然分析:理论与方法
作者: 李鲲鹏
出版社:商务印书馆 2020-01-01
简介:高维因子模型是当前计量经济学中的一个重要模型。以美国美联储前主席Ben S. Bernanke、哈佛大学教授James H. Stock以及普林斯顿大学教授Mark M. Watson为代表的欧美学者,在广泛的实证研究中发现,经过高维因子模型增广的计量经济学模型在宏观经济预测(Stock and Watson, 2002, JBES)、政策效果评价(Bernanke, Bovin and Eliasz, 2005, QJE)以及经验事实挖掘(Kose, Othok and Whiteman, 2003, AER)上有着非常重要的应用。 然而现有的高维因子模型的分析,主要集中于主成分分析,更为一般的极大似然分析鲜有文献涉及。本书将建立极大似然分析框架作为研究的主要内容,系统地研究了高维因子模型极大似然估计量的一致性、收敛速度和渐近分布,填补了高维因子分析理论重要的理论空白。此外,作者还将研究思路拓展到存在交互效应的面板数据模型中,用新的框架研究了极大似然方法估计交互效应模型。相关理论成果对于拓展实证研究范围,提高实证研究的可信度有着重要的意义。