简介
"The first edition of this book described the concept of Integrated Waste Management (IWM), and the use of Life Cycle Inventory (LCI) to assess the environmental and economic performance of solid waste systems. Examples are now appearing in the literature. To learn from these experiences this 2nd edition focuses on case studies, both of IWM systems, and of the use of LCI. The new edition also includes updated chapters on waste generation, waste collection, central sorting, biological treatment, thermal treatment, materials recycling and landfill." "This 2nd edition also provides a more user-friendly computer model (IWM-2) for waste managers. To make it more widely accessible, the new tool is provided in Windows format, with greatly improved input and output features, and the ability to compare different scenarios. IWM-2 is designed to be an "entry level" LCI model for solid waste - user-friendly and appropriate to anyone starting to apply life cycle thinking to solid waste systems." "Written for policy-makers in local, national and international government, and for waste managers and professionals in industries concerned with solid waste management (e.g. packaging, food and consumer goods), this book is also of particular value to environmental managers and environmentalists in general."--BOOK JACKET.
目录
Table Of Contents:
Preface xxiii
Currency conversion values xxviii
CONCEPTS AND CASE STUDIES
Introduction 1(14)
Summary 1(1)
The aims of the book 1(1)
What is waste? 1(2)
The concerns over waste 3(6)
The old concern - the conservation of resources 4(2)
The new concerns - pollution and the deterioration of renewables 6(1)
Sustainable waste management 6(1)
Pollution 7(2)
Objectives 9(1)
Current approaches - legislation 9(2)
End-of-pipe regulations 9(1)
Strategic targets 9(2)
Economic costs of environmental improvements 11(2)
Internalising external environmental costs 11(1)
Building environmental objectives into the waste management system 12(1)
An integrated approach to solid waste management 13(2)
Integrated Waste Management 15(18)
Summary 15(1)
The basic requirements of waste management 15(3)
The generation of less waste 16(2)
The concept of Sustainable Waste Management 18(1)
Characteristics of a Sustainable Waste Management system 18(3)
An integrated system 18(1)
Market oriented 19(1)
Flexibility 19(1)
Scale 20(1)
Social acceptability 20(1)
Development of the Integrated Waste Management concept 21(1)
Implementing Integrated Waste Management 22(4)
The importance of a holistic approach 23(1)
Paying for Integrated Waste Management 24(1)
Waste management planning and the Hierarchy of Waste Management 24(2)
Integrated Waste Management in countries with developing economies 26(3)
IWM systems for countries with developing economies 26(1)
Dumping and landfilling 26(1)
Separation and treatment of organic waste 27(1)
Recycling and scavenging 28(1)
Incineration 29(1)
The benefits of IWM to countries with developing economies 29(1)
Modelling waste management --- why model? 29(4)
Previous modelling of waste management 30(1)
Using Life Cycle Assessment for Integrated Waste Management 30(1)
Models 30(1)
Data 31(2)
The Development of Integrated Waste Management Systems: Case Studies and Their Analysis 33(52)
Summary 33(1)
Introduction 33(1)
Case study format 33(2)
Case studies 35(7)
Difficulty of comparison 35(1)
Common drivers 36(4)
Legislation 40(1)
IWM begins at a local level 40(1)
System evolution 40(2)
Case study details - schematic diagrams 42(1)
Abbreviations 42(1)
Definitions (see also Chapters 8--14) 42(1)
Pamplona, Spain, 1996 43(2)
Summary - Pamplona 43(1)
Collection 43(1)
Treatment 43(2)
Landfill 45(1)
Additional information 45(1)
Prato, Italy, 1997 45(3)
Summary - Prato 45(2)
Collection 47(1)
Treatment 47(1)
Landfill 47(1)
Additional information 47(1)
Brescia, Italy, 1996 48(3)
Summary - Brescia commune 48(2)
Collection 50(1)
Treatment 50(1)
Landfill 51(1)
Additional information 51(1)
Hampshire, England, 1996/97 51(3)
Summary - Hampshire 53(1)
Collection 53(1)
Treatment 53(1)
Landfill 54(1)
Additional information 54(1)
Helsinki, Finland, 1997 54(3)
Summary - Helsinki 54(2)
Collection 56(1)
Treatment 56(1)
Landfill 56(1)
Additional information 57(1)
Lahn-Dill-Kreis, Germany, 1996 57(4)
Summary - Lahn-Dill-Kreis 57(1)
Collection 57(2)
Treatment 59(1)
Landfill 59(1)
Additional information - how to move towards Integrated Waste Management 59(2)
Vienna, Austria, 1996 61(3)
Summary - Vienna 61(1)
Collection 61(2)
Treatment 63(1)
Landfill 63(1)
Additional information 63(1)
Malmo Region, Sweden, 1996 64(3)
Summary - Malmo Region 64(2)
Collection 66(1)
Treatment 66(1)
Landfill 66(1)
Additional information 67(1)
Zurich, Switzerland, 1997 67(4)
Summary - Zurich 67(2)
Collection 69(1)
Treatment 69(1)
Landfill 70(1)
Additional information 70(1)
Copenhagen, Denmark, 1996 71(3)
Summary - Copenhagen 71(1)
Collection 71(2)
Treatment 73(1)
Landfill 73(1)
Additional information 73(1)
Seattle, USA, 1998 74(4)
Summary - Seattle 74(1)
Collection 74(2)
Treatment 76(1)
Landfill 76(1)
Additional information 77(1)
Case study analysis - conclusions 78(1)
Madras, India, 1999 - a case study from a country with a developing economy 79(3)
Introduction 79(1)
The development of EXNORA 80(1)
The scale of EXNORA's success 81(1)
Future plans for EXNORA 82(1)
Conclusions 82(1)
Optimisation of Integrated Waste Management systems 82(3)
Life Cycle Assessment 85(18)
Summary 85(1)
What is Life Cycle Assessment? 85(1)
Benefits of the Life Cycle Approach 86(1)
Limitations of the Life Cycle Approach 87(1)
International Standards Organisation (ISO) - The ISO 14040 series 88(1)
Structure of a Life Cycle Assessment 89(13)
Goal and scope definition 90(1)
Defining the Goal of the study 90(1)
Defining the Scope of the Study 91(1)
Product System 91(1)
Functional unit 91(1)
System Boundaries 92(1)
Life Cycle Inventory Analysis (LCI) 93(1)
Data quality requirements 94(1)
Sensitivity and uncertainty analysis 94(1)
Transprency 95(1)
Critical review 95(1)
Life Cycle Impact Assessment (LCIA) 96(3)
Classification 99(1)
Selection of impact categories 99(1)
Characterisation 99(1)
Normalisation 99(1)
Weighting 99(1)
Life Cycle Interpretation 100(1)
Identification of significant issues 101(1)
Evaluation 101(1)
Conclusions, recommendations and reporting 102(1)
Life Cycle Inventory of solid waste 102(1)
A Life Cycle Inventory of Solid Waste 103(26)
Summary 103(1)
Integrated Waste Management and Life Cycle Inventory 103(1)
A Life Cycle Inventory of waste 104(13)
Goal definition 104(1)
What are the purposes of the LCI? 105(1)
Defining the functional unit 105(2)
System boundaries 107(1)
Where is the cradle of waste and where is the grave? 107(2)
The cradle 109(1)
The grave 109(3)
What level of detail? 112(1)
The Inventory stage 113(4)
Results of the Life Cycle Inventory model: system inputs and outputs 117(2)
Net energy consumption 117(1)
Air and water emissions 117(1)
Landfill volume 118(1)
Recovered materials and compost 118(1)
Other statistics 118(1)
Fuel and electricity consumption in the Life Cycle of solid waste 119(3)
Electricity consumption 119(3)
Petrol and diesel consumption 122(1)
Natural gas consumption 122(1)
The economic assessment 122(2)
The main differences between IWM-1 and IWM-2 Life Cycle Inventory models 124(1)
Other LCI models for waste management 125(4)
US Environmental Protection Agency Life Cycle model for waste management 125(1)
The UK Environment Agency model 125(1)
CSR/EPIC model 126(1)
The relationship between a Life Cycle Inventory for Waste and product or packaging Life Cycle Inventories 126(3)
LCI Case Studies 129(36)
Summary 129(1)
Introduction 129(1)
Caracas, Venezuela - LCI scenarios for the recovery of recyclable material 129(3)
LCI tool 129(2)
Baseline scenario 131(1)
Recycling scenario 131(1)
Comparison 131(1)
Conclusions 132(1)
Acknowledgement 132(1)
Pamplona, Spain - LCI scenarios for separate collection of organic material 132(4)
LCI tool 132(1)
Baseline scenario 132(1)
Pamplona scenarios 133(1)
Results 133(1)
Conclusions 134(1)
Acknowledgement 134(2)
Gloucestershire county, UK - LCI scenarios for composting, recycling and incineration 136(6)
Development of waste management scenarios for Gloucestershire 136(1)
Baseline scenario 136(1)
Results 136(3)
Conclusions 1 139(1)
Application 139(1)
Further studies 140(1)
Use of LCI results by local authorities 140(1)
Conclusions 2 141(1)
Acknowledgements 141(1)
Barcelona Metropolitan Area - LCI for long-term Integrated Waste Management strategy planning 142(5)
Collection and disposal 142(1)
Objectives of the new waste management system 142(1)
Use of an LCI tool to help develop the new Integrated Waste Management system 142(2)
The new Integrated Waste Management system 144(1)
Conclusions 145(2)
London, Ontario, Canada - LCI for assessment of different materials recycling options 147(5)
Results from the LCI model 149(1)
Energy 149(1)
Global Warming Potential (GWP) 150(1)
Conclusions 151(1)
Acknowledgements 151(1)
United States Environmental Protection Agency case studies 152(7)
Background 152(1)
Decision Support Tool 152(2)
Testing the Decision Support Tool in local communities 154(1)
Wisconsin case study methodology and results 155(1)
Waste composition, generation, and recycling data 155(1)
Collection, recycling, and disposal options for residential, multi-family, and commercial waste 155(1)
Key assumptions employed 156(1)
Discussion of results 157(1)
Acknowledgements 158(1)
United Kingdom Environment Agency case studies 159(5)
Introduction 159(1)
Interpretation of the data from WISARD 160(2)
Brighton & Hove Council 162(1)
Carmarthenshire County Council 162(1)
Nottingham City Council 162(1)
Dorset County Council 162(1)
Gateshead Metropolitan Borough Council 162(1)
Pendle Borough Council (Lancashire) 162(1)
Powys County Council 163(1)
Shropshire County Council 163(1)
Surrey County Council 163(1)
Conclusions 164(1)
Acknowledgements 164(1)
Where to from here? 164(1)
The Overall Picture 165(4)
Introduction 165(2)
From Life Cycle Inventory results to sustainability 167(1)
The progress so far 167(1)
Future directions 168(1)
ELEMENTS OF IWM
Solid Waste Generation and Composition 169(24)
Summary 169(1)
Introduction 169(1)
Solid waste generation 170(5)
Solid wastes dealt with in this study 175(1)
Quantities of MSW generated 175(3)
Composition of MSW 178(6)
Composition of MSW - by materials 178(6)
Composition of MSW - by chemical analysis 184(1)
Variability in MSW generation 184(3)
Effects of source reduction 187(1)
MSW classification - the need for standardisation 187(4)
MSW analysis methods 191(2)
Waste Collection 193(34)
Summary 193(1)
Introduction 193(1)
Home sorting 194(2)
Sorting ability 194(1)
Sorting motivation 194(2)
Bring versus kerbside collection systems 196(3)
Collection systems 199(21)
Dry recyclable materials 199(1)
Single (mono) material banks 199(3)
Mixed recyclables banks 202(1)
Kerbside collection 202(1)
Amount of material collected 203(1)
Contamination levels 204(2)
Biowaste and garden waste 206(1)
Biowaste definition 207(1)
The advantages of including non-recyclable paper in the definition of biowaste 208(2)
Possible disadvantages of including non-recyclable paper in the definition of biowaste 210(1)
Amounts of biowaste collected 211(1)
Contamination levels 211(2)
Collection methods 213(1)
Packaging waste 213(1)
Status of implementation 214(2)
Inconsistencies between packaging recovery schemes 216(1)
Costs of different recovery schemes 217(1)
Results of used packaging recovery schemes 218(1)
Hazardous materials in household waste - the exception that proves the rule 218(1)
Bulky waste 219(1)
Restwaste 219(1)
Variable rate pricing systems (pay-as-you-throw) 220(3)
Case study: San Jose, California, USA 221(1)
Case study: Fort Collins, Colorado, USA 222(1)
Lessons learned 222(1)
Success: increased recycling participation 223(1)
Integrated collection schemes 223(4)
Central Sorting 227(14)
Summary 227(1)
Introduction 227(1)
General sorting techniques 227(5)
Manual sorting 228(1)
Mechanical sorting 229(1)
Screening 229(1)
Air classification 229(1)
Air knife 229(1)
Sink/float separation 230(1)
Flotation 230(1)
Magnetic separation 230(1)
Electromagnetic separation 230(1)
Electrostatic separation 231(1)
Detect and route systems 231(1)
Roll crushing 232(1)
Shredding 232(1)
Baling 232(1)
Central sorting at a Materials Recovery Facility (MRF) 232(4)
Materials Recovery Facility (MRF) design 233(2)
Advances in MRF technology 235(1)
Single-stream processing of dry recyclables 235(1)
Integrated waste processing 235(1)
Sorting of mixed waste for Refuse-Derived Fuel (RDF) 236(5)
Status of RDF 238(1)
RDF sorting processes 239(1)
Waste reception and storage 239(1)
Waste liberation and screening 239(1)
Fuel refining 240(1)
Fuel preparation 240(1)
Fuel storage and quality control 240(1)
Biological Treatment 241(32)
Summary 241(1)
Introduction 241(2)
Biological treatment objectives 243(3)
Pre-treatment for disposal 243(1)
Volume reduction 243(1)
Stabilisation 243(2)
Sterilisation 245(1)
Valorisation 245(1)
Biogas production 245(1)
Compost production 245(1)
Overview of biological treatment 246(6)
Biological treatment processes 252(11)
Pre-treatment 252(4)
Aerobic processing - composting 256(4)
Dry stabilization 260(1)
Anaerobic processing - biogasification 260(1)
'Wet' anaerobic digestion 261(1)
'Dry' anaerobic digestion 262(1)
Maturation and refining 262(1)
Compost markets 263(4)
Compost standards 267(6)
Thermal Treatment 273(24)
Summary 273(1)
Introduction 273(1)
Thermal treatment objectives 273(1)
Current state of thermal treatment 274(3)
Mass-burn incineration of MSW 277(14)
The incineration process 277(2)
Grate incinerators 279(1)
Fluidised bed incinerators 279(1)
Rotary combustors or rotary kilns 280(1)
Multiple-chamber incinerators 281(1)
Multiple-hearth furnace 281(1)
Pyrolysis or starved air 281(1)
Energy from waste plants (EfW) 281(1)
Emission control 282(1)
Carbon dioxide (CO2) 283(1)
Carbon monoxide (CO) 283(1)
Hydrochloric acid (HCI) 283(1)
Hydrogen fluoride (HF) 283(1)
Sulphur oxides (SOx) 283(1)
Nitrogen oxides (NOx) 284(1)
Particulates 284(1)
Heavy metals (Hg, Cd, Pb, Zn, Cu, Ni, Cr) 284(1)
Dioxins and furans 284(3)
Gas-cleaning equipment 287(1)
Electrostatic precipitators (ESP) 287(1)
Fabric filters 288(1)
Scrubbers (wet, dry, semi-dry) 288(1)
Dry scrubbing 288(1)
Nitrogen control 289(1)
Treatment of solid residues 290(1)
Burning of Refuse-Derived Fuel (RDF) 291(1)
Burning of source-separated paper and plastic 292(1)
Emission limits 293(2)
Public acceptability 295(2)
Landfilling 297(14)
Summary 297(1)
Introduction 297(1)
Landfilling objectives 298(1)
Current landfilling activity 299(1)
Landfilling - basic philosophy 299(3)
Landfill siting 302(1)
Landfill site design and operation 303(1)
Landfill leachate 304(1)
Landfill gas 305(1)
Waste inputs 306(1)
Scavenging 307(4)
Materials Recycling 311(14)
Summary 311(1)
Introduction 311(3)
Materials manufacturing and recycling processes 314(11)
Transportation 314(1)
Paper and board manufacturing and recycling 314(2)
Glass 316(2)
Ferrous metal manufacture and recycling 318(1)
Non-ferrous metal manufacture and recycling 319(2)
Plastic manufacturing and recycling 321(2)
Textiles 323(2)
IWM2 MODEL GUIDE
IWM-2: A Life Cycle Inventory Model for Integrated Waste Management 325(8)
Summary 325(1)
Introduction 325(2)
Who are the potential users of the model? 325(1)
What are the potential uses of the model? 325(1)
What data are needed to run the model? 325(1)
What is the goal of the model? 326(1)
What is the scope of the model? 326(1)
What is the functional unit of the model? 326(1)
What are the system boundaries (cradle and grave) of the model? 326(1)
Allocation procedure 327(1)
Conventions used in this chapter 327(1)
The IWM-2 computer model 327(3)
The user guide 330(3)
Welcome to IWM-2 330(1)
IWM-2 Main screen 331(2)
Waste Inputs 333(6)
Defining the waste input for the LCI computer model - data sources 333(1)
Classification of solid waste used in the Life Cycle Inventory 333(2)
The Waste Input screen 335(4)
System area (Screen 3) 335(1)
Collected Household Waste (Screen 4) 336(1)
Delivered Household Waste (Screen 5) 336(1)
Collected Commercial Waste (Screen 6) 337(1)
Input Summary (Screen 7) 338(1)
Waste Collection 339(18)
Summary 339(1)
Defining the system boundaries 339(1)
Environmental burdens due to transport 340(1)
Other burdens 341(5)
Collection bags 342(1)
Collection bins 342(4)
Pre-treatment of waste 346(1)
Economic costs 346(1)
Material bank systems 346(1)
Kerbside collection systems 347(1)
The Waste Collection screen 347(10)
System Area (Screen 8) 347(2)
Collected Household Waste (Screen 9) 349(1)
Tab KCSνm;1 349(2)
Tab MBCSνm;1 (Screen 10) 351(2)
Delivered Household Waste (Screen 11) 353(1)
Collected Commercial Waste (Screen 12) 354(2)
Summary (Screen 13) 356(1)
MRF and RDF Sorting 357(14)
Summary 357(1)
Defining the system boundaries 357(2)
MRF sorting 358(1)
Inputs 358(1)
Outputs 358(1)
RDF sorting 359(5)
Inputs 359(1)
Energy consumption 360(1)
Outputs 361(2)
Data used in RDF sorting section of the model 363(1)
Economic Costs 364(2)
MRF sorting 364(1)
RDF Sorting 364(2)
MRF/RDF Sorting screen 366(5)
MRF Sorting (Screen 14) 366(2)
cRDF Sorting (Screen 15) 368(2)
dRDF Sorting (Screen 16) 370(1)
Biological Treatment 371(22)
Summary 371(1)
Defining the system boundaries 371(1)
Waste Inputs 372(3)
Energy consumption 372(1)
Composting 372(2)
Biogasification 374(1)
Outputs 375(12)
Secondary materials from pre-sorting 376(1)
Biogas/energy 376(2)
Compost 378(1)
Compost quantity 378(5)
Environmental benefits of using compost 383(1)
Sorting residue 383(1)
Compost-refining residue 383(1)
Air emissions 383(4)
Water emissions 387(1)
Economic costs 387(1)
Biological treatments 387(6)
Process Input (Screen 17) 387(2)
Composting (Screen 18) 389(1)
Biogasification (Screen 19) 390(3)
Thermal Treatment 393(18)
Summary 393(1)
Defining the system boundaries 393(1)
Data availability 394(1)
Waste Inputs 394(1)
Energy consumption 395(1)
Outputs 395(9)
Energy 395(1)
Mass burn 396(1)
RDF 396(1)
Source-separated fuel 396(1)
Energy recovery 396(1)
Air emissions 397(1)
Mass burn 397(4)
RDF and source-separated fuels 401(1)
Water emissions 401(1)
Solid waste 401(1)
Mass burn 401(1)
RDF 401(3)
Source-separated fuel 404(1)
Economic costs of thermal treatment 404(1)
Mass burn 404(1)
RDF and source-separated materials 405(1)
Thermal treatments 405(6)
Process Inputs (Screen 20) 405(1)
Incineration νm;1 (Screen 21) 406(2)
Incineration νm;2 408(1)
RDF Burning (Screen 22) 408(1)
PPDF Burning (Screen 23) 409(2)
Landfilling 411(20)
Summary 411(1)
Defining the system boundaries 411(1)
Waste inputs 412(1)
Restwaste 412(1)
Sorting residues 413(1)
Biological treatment residues 413(1)
Ash 413(1)
Solid waste from energy production or raw material manufacture 413(1)
Energy consumption 413(1)
Outputs 413(13)
Landfill gas production 414(1)
Gas production 414(1)
Landfill gas from Municipal Solid Waste, Restwaste and Sorting residues 414(3)
Landfill gas from biologically treated material 417(1)
Landfill gas from ash 417(1)
Landfill gas composition 417(2)
Gas control and energy recovery 419(3)
Leachate 422(1)
Leachate production 422(1)
Leachate composition 422(2)
Leachate collection and treatment 424(1)
Final inert solid waste 425(1)
Economic costs 426(1)
Landfilling 427(4)
Process Input (Screen 24) 427(1)
Transfer Station (Screen 25) 428(1)
Non-Hazardous Landfill Management & Costs (Screen 26) 429(1)
Hazardous Landfill Management & Costs 430(1)
Materials Recycling 431(26)
Summary 431(1)
Defining the system boundaries 431(1)
Inputs 432(2)
Transport burdens 434(1)
Feed-stock energy 434(1)
Paper 434(6)
Carbon balance 437(3)
Glass 440(1)
Metal 440(6)
Metal - ferrous 440(4)
Metal - aluminium 444(2)
Plastics 446(4)
Textiles 450(1)
Economic costs 451(1)
Model data 451(4)
Materials recycling (Screen 27) 455(2)
Advanced Variables 457(14)
Summary 457(2)
Fuels & Electricity (Screen 28) 457(2)
Waste Collection 459(4)
Waste Collection - Kerbside Collection System (KCS) νm;1 (Screen 29) 459(1)
Waste Collection - Material Bank Collection System (MBCS) νm;1 (Screen 30) 460(1)
Waste Collection - Bins & Bags (Screen 31) 461(1)
Waste Collection - Commercial (Screen 32) 462(1)
RDF Sorting 463(1)
RDF Sorting - cRDF (Screen 33) 463(1)
RDF Sorting - dRDF 464(1)
Thermal Treatments 464(3)
Thermal Treatments - Incineration Process νm;1 (Screen 34) 464(1)
Thermal Treatments - Incineration Process νm;2 465(1)
Thermal Treatments - Incineration Emissions (Screen 35) 465(1)
Thermal Treatments - RDF Burning (Screen 36) 466(1)
Thermal Treatments - PPDF Burning 467(1)
Landfilling 467(1)
Landfilling (Screen 37) 467(1)
Recycling 468(1)
Recycling (Screen 38) 468(1)
Other Variables 469(2)
Other Variables (Screen 39) 469(2)
Waste System Flow 471(2)
Waste system flow 471(2)
Streams Button 473(2)
Streams 473(2)
Results Button 475(6)
Results 475(6)
Results - Costs (Screen 42) 475(1)
Results - Fuels (Screen 43) 475(2)
Results - Final Solid Waste (Screen 44) 477(1)
Results - Air Emissions (Screen 45) 477(1)
Results - Water Emissions 478(1)
Results - Emissions Guide (Screen 46) 479(2)
Scenario Comparisons 481(8)
Compare Scenarios 481(3)
Making comparisons 484(3)
Identifying improvement opportunities 487(2)
The importance of operations in the home 487(1)
System improvements 488(1)
What Parameters Have Changed? 489(2)
What's Changed? 489(2)
References 491(16)
Index 507
Preface xxiii
Currency conversion values xxviii
CONCEPTS AND CASE STUDIES
Introduction 1(14)
Summary 1(1)
The aims of the book 1(1)
What is waste? 1(2)
The concerns over waste 3(6)
The old concern - the conservation of resources 4(2)
The new concerns - pollution and the deterioration of renewables 6(1)
Sustainable waste management 6(1)
Pollution 7(2)
Objectives 9(1)
Current approaches - legislation 9(2)
End-of-pipe regulations 9(1)
Strategic targets 9(2)
Economic costs of environmental improvements 11(2)
Internalising external environmental costs 11(1)
Building environmental objectives into the waste management system 12(1)
An integrated approach to solid waste management 13(2)
Integrated Waste Management 15(18)
Summary 15(1)
The basic requirements of waste management 15(3)
The generation of less waste 16(2)
The concept of Sustainable Waste Management 18(1)
Characteristics of a Sustainable Waste Management system 18(3)
An integrated system 18(1)
Market oriented 19(1)
Flexibility 19(1)
Scale 20(1)
Social acceptability 20(1)
Development of the Integrated Waste Management concept 21(1)
Implementing Integrated Waste Management 22(4)
The importance of a holistic approach 23(1)
Paying for Integrated Waste Management 24(1)
Waste management planning and the Hierarchy of Waste Management 24(2)
Integrated Waste Management in countries with developing economies 26(3)
IWM systems for countries with developing economies 26(1)
Dumping and landfilling 26(1)
Separation and treatment of organic waste 27(1)
Recycling and scavenging 28(1)
Incineration 29(1)
The benefits of IWM to countries with developing economies 29(1)
Modelling waste management --- why model? 29(4)
Previous modelling of waste management 30(1)
Using Life Cycle Assessment for Integrated Waste Management 30(1)
Models 30(1)
Data 31(2)
The Development of Integrated Waste Management Systems: Case Studies and Their Analysis 33(52)
Summary 33(1)
Introduction 33(1)
Case study format 33(2)
Case studies 35(7)
Difficulty of comparison 35(1)
Common drivers 36(4)
Legislation 40(1)
IWM begins at a local level 40(1)
System evolution 40(2)
Case study details - schematic diagrams 42(1)
Abbreviations 42(1)
Definitions (see also Chapters 8--14) 42(1)
Pamplona, Spain, 1996 43(2)
Summary - Pamplona 43(1)
Collection 43(1)
Treatment 43(2)
Landfill 45(1)
Additional information 45(1)
Prato, Italy, 1997 45(3)
Summary - Prato 45(2)
Collection 47(1)
Treatment 47(1)
Landfill 47(1)
Additional information 47(1)
Brescia, Italy, 1996 48(3)
Summary - Brescia commune 48(2)
Collection 50(1)
Treatment 50(1)
Landfill 51(1)
Additional information 51(1)
Hampshire, England, 1996/97 51(3)
Summary - Hampshire 53(1)
Collection 53(1)
Treatment 53(1)
Landfill 54(1)
Additional information 54(1)
Helsinki, Finland, 1997 54(3)
Summary - Helsinki 54(2)
Collection 56(1)
Treatment 56(1)
Landfill 56(1)
Additional information 57(1)
Lahn-Dill-Kreis, Germany, 1996 57(4)
Summary - Lahn-Dill-Kreis 57(1)
Collection 57(2)
Treatment 59(1)
Landfill 59(1)
Additional information - how to move towards Integrated Waste Management 59(2)
Vienna, Austria, 1996 61(3)
Summary - Vienna 61(1)
Collection 61(2)
Treatment 63(1)
Landfill 63(1)
Additional information 63(1)
Malmo Region, Sweden, 1996 64(3)
Summary - Malmo Region 64(2)
Collection 66(1)
Treatment 66(1)
Landfill 66(1)
Additional information 67(1)
Zurich, Switzerland, 1997 67(4)
Summary - Zurich 67(2)
Collection 69(1)
Treatment 69(1)
Landfill 70(1)
Additional information 70(1)
Copenhagen, Denmark, 1996 71(3)
Summary - Copenhagen 71(1)
Collection 71(2)
Treatment 73(1)
Landfill 73(1)
Additional information 73(1)
Seattle, USA, 1998 74(4)
Summary - Seattle 74(1)
Collection 74(2)
Treatment 76(1)
Landfill 76(1)
Additional information 77(1)
Case study analysis - conclusions 78(1)
Madras, India, 1999 - a case study from a country with a developing economy 79(3)
Introduction 79(1)
The development of EXNORA 80(1)
The scale of EXNORA's success 81(1)
Future plans for EXNORA 82(1)
Conclusions 82(1)
Optimisation of Integrated Waste Management systems 82(3)
Life Cycle Assessment 85(18)
Summary 85(1)
What is Life Cycle Assessment? 85(1)
Benefits of the Life Cycle Approach 86(1)
Limitations of the Life Cycle Approach 87(1)
International Standards Organisation (ISO) - The ISO 14040 series 88(1)
Structure of a Life Cycle Assessment 89(13)
Goal and scope definition 90(1)
Defining the Goal of the study 90(1)
Defining the Scope of the Study 91(1)
Product System 91(1)
Functional unit 91(1)
System Boundaries 92(1)
Life Cycle Inventory Analysis (LCI) 93(1)
Data quality requirements 94(1)
Sensitivity and uncertainty analysis 94(1)
Transprency 95(1)
Critical review 95(1)
Life Cycle Impact Assessment (LCIA) 96(3)
Classification 99(1)
Selection of impact categories 99(1)
Characterisation 99(1)
Normalisation 99(1)
Weighting 99(1)
Life Cycle Interpretation 100(1)
Identification of significant issues 101(1)
Evaluation 101(1)
Conclusions, recommendations and reporting 102(1)
Life Cycle Inventory of solid waste 102(1)
A Life Cycle Inventory of Solid Waste 103(26)
Summary 103(1)
Integrated Waste Management and Life Cycle Inventory 103(1)
A Life Cycle Inventory of waste 104(13)
Goal definition 104(1)
What are the purposes of the LCI? 105(1)
Defining the functional unit 105(2)
System boundaries 107(1)
Where is the cradle of waste and where is the grave? 107(2)
The cradle 109(1)
The grave 109(3)
What level of detail? 112(1)
The Inventory stage 113(4)
Results of the Life Cycle Inventory model: system inputs and outputs 117(2)
Net energy consumption 117(1)
Air and water emissions 117(1)
Landfill volume 118(1)
Recovered materials and compost 118(1)
Other statistics 118(1)
Fuel and electricity consumption in the Life Cycle of solid waste 119(3)
Electricity consumption 119(3)
Petrol and diesel consumption 122(1)
Natural gas consumption 122(1)
The economic assessment 122(2)
The main differences between IWM-1 and IWM-2 Life Cycle Inventory models 124(1)
Other LCI models for waste management 125(4)
US Environmental Protection Agency Life Cycle model for waste management 125(1)
The UK Environment Agency model 125(1)
CSR/EPIC model 126(1)
The relationship between a Life Cycle Inventory for Waste and product or packaging Life Cycle Inventories 126(3)
LCI Case Studies 129(36)
Summary 129(1)
Introduction 129(1)
Caracas, Venezuela - LCI scenarios for the recovery of recyclable material 129(3)
LCI tool 129(2)
Baseline scenario 131(1)
Recycling scenario 131(1)
Comparison 131(1)
Conclusions 132(1)
Acknowledgement 132(1)
Pamplona, Spain - LCI scenarios for separate collection of organic material 132(4)
LCI tool 132(1)
Baseline scenario 132(1)
Pamplona scenarios 133(1)
Results 133(1)
Conclusions 134(1)
Acknowledgement 134(2)
Gloucestershire county, UK - LCI scenarios for composting, recycling and incineration 136(6)
Development of waste management scenarios for Gloucestershire 136(1)
Baseline scenario 136(1)
Results 136(3)
Conclusions 1 139(1)
Application 139(1)
Further studies 140(1)
Use of LCI results by local authorities 140(1)
Conclusions 2 141(1)
Acknowledgements 141(1)
Barcelona Metropolitan Area - LCI for long-term Integrated Waste Management strategy planning 142(5)
Collection and disposal 142(1)
Objectives of the new waste management system 142(1)
Use of an LCI tool to help develop the new Integrated Waste Management system 142(2)
The new Integrated Waste Management system 144(1)
Conclusions 145(2)
London, Ontario, Canada - LCI for assessment of different materials recycling options 147(5)
Results from the LCI model 149(1)
Energy 149(1)
Global Warming Potential (GWP) 150(1)
Conclusions 151(1)
Acknowledgements 151(1)
United States Environmental Protection Agency case studies 152(7)
Background 152(1)
Decision Support Tool 152(2)
Testing the Decision Support Tool in local communities 154(1)
Wisconsin case study methodology and results 155(1)
Waste composition, generation, and recycling data 155(1)
Collection, recycling, and disposal options for residential, multi-family, and commercial waste 155(1)
Key assumptions employed 156(1)
Discussion of results 157(1)
Acknowledgements 158(1)
United Kingdom Environment Agency case studies 159(5)
Introduction 159(1)
Interpretation of the data from WISARD 160(2)
Brighton & Hove Council 162(1)
Carmarthenshire County Council 162(1)
Nottingham City Council 162(1)
Dorset County Council 162(1)
Gateshead Metropolitan Borough Council 162(1)
Pendle Borough Council (Lancashire) 162(1)
Powys County Council 163(1)
Shropshire County Council 163(1)
Surrey County Council 163(1)
Conclusions 164(1)
Acknowledgements 164(1)
Where to from here? 164(1)
The Overall Picture 165(4)
Introduction 165(2)
From Life Cycle Inventory results to sustainability 167(1)
The progress so far 167(1)
Future directions 168(1)
ELEMENTS OF IWM
Solid Waste Generation and Composition 169(24)
Summary 169(1)
Introduction 169(1)
Solid waste generation 170(5)
Solid wastes dealt with in this study 175(1)
Quantities of MSW generated 175(3)
Composition of MSW 178(6)
Composition of MSW - by materials 178(6)
Composition of MSW - by chemical analysis 184(1)
Variability in MSW generation 184(3)
Effects of source reduction 187(1)
MSW classification - the need for standardisation 187(4)
MSW analysis methods 191(2)
Waste Collection 193(34)
Summary 193(1)
Introduction 193(1)
Home sorting 194(2)
Sorting ability 194(1)
Sorting motivation 194(2)
Bring versus kerbside collection systems 196(3)
Collection systems 199(21)
Dry recyclable materials 199(1)
Single (mono) material banks 199(3)
Mixed recyclables banks 202(1)
Kerbside collection 202(1)
Amount of material collected 203(1)
Contamination levels 204(2)
Biowaste and garden waste 206(1)
Biowaste definition 207(1)
The advantages of including non-recyclable paper in the definition of biowaste 208(2)
Possible disadvantages of including non-recyclable paper in the definition of biowaste 210(1)
Amounts of biowaste collected 211(1)
Contamination levels 211(2)
Collection methods 213(1)
Packaging waste 213(1)
Status of implementation 214(2)
Inconsistencies between packaging recovery schemes 216(1)
Costs of different recovery schemes 217(1)
Results of used packaging recovery schemes 218(1)
Hazardous materials in household waste - the exception that proves the rule 218(1)
Bulky waste 219(1)
Restwaste 219(1)
Variable rate pricing systems (pay-as-you-throw) 220(3)
Case study: San Jose, California, USA 221(1)
Case study: Fort Collins, Colorado, USA 222(1)
Lessons learned 222(1)
Success: increased recycling participation 223(1)
Integrated collection schemes 223(4)
Central Sorting 227(14)
Summary 227(1)
Introduction 227(1)
General sorting techniques 227(5)
Manual sorting 228(1)
Mechanical sorting 229(1)
Screening 229(1)
Air classification 229(1)
Air knife 229(1)
Sink/float separation 230(1)
Flotation 230(1)
Magnetic separation 230(1)
Electromagnetic separation 230(1)
Electrostatic separation 231(1)
Detect and route systems 231(1)
Roll crushing 232(1)
Shredding 232(1)
Baling 232(1)
Central sorting at a Materials Recovery Facility (MRF) 232(4)
Materials Recovery Facility (MRF) design 233(2)
Advances in MRF technology 235(1)
Single-stream processing of dry recyclables 235(1)
Integrated waste processing 235(1)
Sorting of mixed waste for Refuse-Derived Fuel (RDF) 236(5)
Status of RDF 238(1)
RDF sorting processes 239(1)
Waste reception and storage 239(1)
Waste liberation and screening 239(1)
Fuel refining 240(1)
Fuel preparation 240(1)
Fuel storage and quality control 240(1)
Biological Treatment 241(32)
Summary 241(1)
Introduction 241(2)
Biological treatment objectives 243(3)
Pre-treatment for disposal 243(1)
Volume reduction 243(1)
Stabilisation 243(2)
Sterilisation 245(1)
Valorisation 245(1)
Biogas production 245(1)
Compost production 245(1)
Overview of biological treatment 246(6)
Biological treatment processes 252(11)
Pre-treatment 252(4)
Aerobic processing - composting 256(4)
Dry stabilization 260(1)
Anaerobic processing - biogasification 260(1)
'Wet' anaerobic digestion 261(1)
'Dry' anaerobic digestion 262(1)
Maturation and refining 262(1)
Compost markets 263(4)
Compost standards 267(6)
Thermal Treatment 273(24)
Summary 273(1)
Introduction 273(1)
Thermal treatment objectives 273(1)
Current state of thermal treatment 274(3)
Mass-burn incineration of MSW 277(14)
The incineration process 277(2)
Grate incinerators 279(1)
Fluidised bed incinerators 279(1)
Rotary combustors or rotary kilns 280(1)
Multiple-chamber incinerators 281(1)
Multiple-hearth furnace 281(1)
Pyrolysis or starved air 281(1)
Energy from waste plants (EfW) 281(1)
Emission control 282(1)
Carbon dioxide (CO2) 283(1)
Carbon monoxide (CO) 283(1)
Hydrochloric acid (HCI) 283(1)
Hydrogen fluoride (HF) 283(1)
Sulphur oxides (SOx) 283(1)
Nitrogen oxides (NOx) 284(1)
Particulates 284(1)
Heavy metals (Hg, Cd, Pb, Zn, Cu, Ni, Cr) 284(1)
Dioxins and furans 284(3)
Gas-cleaning equipment 287(1)
Electrostatic precipitators (ESP) 287(1)
Fabric filters 288(1)
Scrubbers (wet, dry, semi-dry) 288(1)
Dry scrubbing 288(1)
Nitrogen control 289(1)
Treatment of solid residues 290(1)
Burning of Refuse-Derived Fuel (RDF) 291(1)
Burning of source-separated paper and plastic 292(1)
Emission limits 293(2)
Public acceptability 295(2)
Landfilling 297(14)
Summary 297(1)
Introduction 297(1)
Landfilling objectives 298(1)
Current landfilling activity 299(1)
Landfilling - basic philosophy 299(3)
Landfill siting 302(1)
Landfill site design and operation 303(1)
Landfill leachate 304(1)
Landfill gas 305(1)
Waste inputs 306(1)
Scavenging 307(4)
Materials Recycling 311(14)
Summary 311(1)
Introduction 311(3)
Materials manufacturing and recycling processes 314(11)
Transportation 314(1)
Paper and board manufacturing and recycling 314(2)
Glass 316(2)
Ferrous metal manufacture and recycling 318(1)
Non-ferrous metal manufacture and recycling 319(2)
Plastic manufacturing and recycling 321(2)
Textiles 323(2)
IWM2 MODEL GUIDE
IWM-2: A Life Cycle Inventory Model for Integrated Waste Management 325(8)
Summary 325(1)
Introduction 325(2)
Who are the potential users of the model? 325(1)
What are the potential uses of the model? 325(1)
What data are needed to run the model? 325(1)
What is the goal of the model? 326(1)
What is the scope of the model? 326(1)
What is the functional unit of the model? 326(1)
What are the system boundaries (cradle and grave) of the model? 326(1)
Allocation procedure 327(1)
Conventions used in this chapter 327(1)
The IWM-2 computer model 327(3)
The user guide 330(3)
Welcome to IWM-2 330(1)
IWM-2 Main screen 331(2)
Waste Inputs 333(6)
Defining the waste input for the LCI computer model - data sources 333(1)
Classification of solid waste used in the Life Cycle Inventory 333(2)
The Waste Input screen 335(4)
System area (Screen 3) 335(1)
Collected Household Waste (Screen 4) 336(1)
Delivered Household Waste (Screen 5) 336(1)
Collected Commercial Waste (Screen 6) 337(1)
Input Summary (Screen 7) 338(1)
Waste Collection 339(18)
Summary 339(1)
Defining the system boundaries 339(1)
Environmental burdens due to transport 340(1)
Other burdens 341(5)
Collection bags 342(1)
Collection bins 342(4)
Pre-treatment of waste 346(1)
Economic costs 346(1)
Material bank systems 346(1)
Kerbside collection systems 347(1)
The Waste Collection screen 347(10)
System Area (Screen 8) 347(2)
Collected Household Waste (Screen 9) 349(1)
Tab KCSνm;1 349(2)
Tab MBCSνm;1 (Screen 10) 351(2)
Delivered Household Waste (Screen 11) 353(1)
Collected Commercial Waste (Screen 12) 354(2)
Summary (Screen 13) 356(1)
MRF and RDF Sorting 357(14)
Summary 357(1)
Defining the system boundaries 357(2)
MRF sorting 358(1)
Inputs 358(1)
Outputs 358(1)
RDF sorting 359(5)
Inputs 359(1)
Energy consumption 360(1)
Outputs 361(2)
Data used in RDF sorting section of the model 363(1)
Economic Costs 364(2)
MRF sorting 364(1)
RDF Sorting 364(2)
MRF/RDF Sorting screen 366(5)
MRF Sorting (Screen 14) 366(2)
cRDF Sorting (Screen 15) 368(2)
dRDF Sorting (Screen 16) 370(1)
Biological Treatment 371(22)
Summary 371(1)
Defining the system boundaries 371(1)
Waste Inputs 372(3)
Energy consumption 372(1)
Composting 372(2)
Biogasification 374(1)
Outputs 375(12)
Secondary materials from pre-sorting 376(1)
Biogas/energy 376(2)
Compost 378(1)
Compost quantity 378(5)
Environmental benefits of using compost 383(1)
Sorting residue 383(1)
Compost-refining residue 383(1)
Air emissions 383(4)
Water emissions 387(1)
Economic costs 387(1)
Biological treatments 387(6)
Process Input (Screen 17) 387(2)
Composting (Screen 18) 389(1)
Biogasification (Screen 19) 390(3)
Thermal Treatment 393(18)
Summary 393(1)
Defining the system boundaries 393(1)
Data availability 394(1)
Waste Inputs 394(1)
Energy consumption 395(1)
Outputs 395(9)
Energy 395(1)
Mass burn 396(1)
RDF 396(1)
Source-separated fuel 396(1)
Energy recovery 396(1)
Air emissions 397(1)
Mass burn 397(4)
RDF and source-separated fuels 401(1)
Water emissions 401(1)
Solid waste 401(1)
Mass burn 401(1)
RDF 401(3)
Source-separated fuel 404(1)
Economic costs of thermal treatment 404(1)
Mass burn 404(1)
RDF and source-separated materials 405(1)
Thermal treatments 405(6)
Process Inputs (Screen 20) 405(1)
Incineration νm;1 (Screen 21) 406(2)
Incineration νm;2 408(1)
RDF Burning (Screen 22) 408(1)
PPDF Burning (Screen 23) 409(2)
Landfilling 411(20)
Summary 411(1)
Defining the system boundaries 411(1)
Waste inputs 412(1)
Restwaste 412(1)
Sorting residues 413(1)
Biological treatment residues 413(1)
Ash 413(1)
Solid waste from energy production or raw material manufacture 413(1)
Energy consumption 413(1)
Outputs 413(13)
Landfill gas production 414(1)
Gas production 414(1)
Landfill gas from Municipal Solid Waste, Restwaste and Sorting residues 414(3)
Landfill gas from biologically treated material 417(1)
Landfill gas from ash 417(1)
Landfill gas composition 417(2)
Gas control and energy recovery 419(3)
Leachate 422(1)
Leachate production 422(1)
Leachate composition 422(2)
Leachate collection and treatment 424(1)
Final inert solid waste 425(1)
Economic costs 426(1)
Landfilling 427(4)
Process Input (Screen 24) 427(1)
Transfer Station (Screen 25) 428(1)
Non-Hazardous Landfill Management & Costs (Screen 26) 429(1)
Hazardous Landfill Management & Costs 430(1)
Materials Recycling 431(26)
Summary 431(1)
Defining the system boundaries 431(1)
Inputs 432(2)
Transport burdens 434(1)
Feed-stock energy 434(1)
Paper 434(6)
Carbon balance 437(3)
Glass 440(1)
Metal 440(6)
Metal - ferrous 440(4)
Metal - aluminium 444(2)
Plastics 446(4)
Textiles 450(1)
Economic costs 451(1)
Model data 451(4)
Materials recycling (Screen 27) 455(2)
Advanced Variables 457(14)
Summary 457(2)
Fuels & Electricity (Screen 28) 457(2)
Waste Collection 459(4)
Waste Collection - Kerbside Collection System (KCS) νm;1 (Screen 29) 459(1)
Waste Collection - Material Bank Collection System (MBCS) νm;1 (Screen 30) 460(1)
Waste Collection - Bins & Bags (Screen 31) 461(1)
Waste Collection - Commercial (Screen 32) 462(1)
RDF Sorting 463(1)
RDF Sorting - cRDF (Screen 33) 463(1)
RDF Sorting - dRDF 464(1)
Thermal Treatments 464(3)
Thermal Treatments - Incineration Process νm;1 (Screen 34) 464(1)
Thermal Treatments - Incineration Process νm;2 465(1)
Thermal Treatments - Incineration Emissions (Screen 35) 465(1)
Thermal Treatments - RDF Burning (Screen 36) 466(1)
Thermal Treatments - PPDF Burning 467(1)
Landfilling 467(1)
Landfilling (Screen 37) 467(1)
Recycling 468(1)
Recycling (Screen 38) 468(1)
Other Variables 469(2)
Other Variables (Screen 39) 469(2)
Waste System Flow 471(2)
Waste system flow 471(2)
Streams Button 473(2)
Streams 473(2)
Results Button 475(6)
Results 475(6)
Results - Costs (Screen 42) 475(1)
Results - Fuels (Screen 43) 475(2)
Results - Final Solid Waste (Screen 44) 477(1)
Results - Air Emissions (Screen 45) 477(1)
Results - Water Emissions 478(1)
Results - Emissions Guide (Screen 46) 479(2)
Scenario Comparisons 481(8)
Compare Scenarios 481(3)
Making comparisons 484(3)
Identifying improvement opportunities 487(2)
The importance of operations in the home 487(1)
System improvements 488(1)
What Parameters Have Changed? 489(2)
What's Changed? 489(2)
References 491(16)
Index 507
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×
亲爱的云图用户,
光盘内的文件都可以直接点击浏览哦
无需下载,在线查阅资料!
