简介
Summary:
Publisher Summary 1
Uusipaikka (mathematics, U. of Turku) writes primarily about profile likelihood-based confidence intervals and generalized regression models with a nod to generalized linear models. Uusipaikka begins as with likelihood-based statistical inference, including likelihood ratio tests and maximum likelihood estimates, then moves to generalized regression models (giving definitions and special cases), the general linear model, including confidence the region's and intervals, nonlinear regression models, generalized linear models, binomial and logistic regression models, Poisson regression models, multinomial regression models, and other generalized regression models, including those which are linear. Extremely well illustrated and containing a wealth of real-life examples, this is intended for senior undergraduate and first level graduate students in generalized regression and can also be suitable in the study of applied statistics. Annotation 漏2008 Book News, Inc., Portland, OR (booknews.com)
目录
Likelihood-Based Statistical Inference 1
1.1 Statistical evidence ................... .... 2
1.1.1 Response and its statistical model . .......... 3
1.1.2 Sample space, parameter space, and model function . 3
1.1.3 Interest functions .......... .......... . 5
1.2 Statistical inference ................... .... 8
1.2.1 Evidential statements . ................. 9
1.2.2 Uncertainties of statements . .............. 9
1.3 Likelihood concepts and law of likelihood . .......... 10
1.3.1 Likelihood, score, and observed information functions 10
1.3.2 Law of likelihood and relative likelihood function . . . 15
1.4 Likelihood-based methods ................... . 17
1.4.1 Likelihood region . .. .... ............ .. 19
1.4.2 Uncertainty of likelihood region . ............ 20
1.5 Profile likelihood-based confidence intervals . ......... 22
1.5.1 Profile likelihood function . ............... 23
1.5.2 Profile likelihood region and its uncertainty ...... 26
1.5.3 Profile likelihood-based confidence interval ....... 28
1.5.4 Calculation of profile likelihood-based confidence inter-
vals ................... . ...... . 31
1.5.5 Comparison with the delta method . .......... 34
1.6 Likelihood ratio tests ................... ... 37
1.6.1 Model restricted by hypothesis . ............ 38
1.6.2 Likelihood of the restricted model . .......... 39
1.6.3 General likelihood ratio test statistic (LRT statistic) . 41
1.6.4 Likelihood ratio test and its observed significance level 42
1.7 Maximum likelihood estimate . ................ 45
1.7.1 Maximum likelihood estimate (MLE) . ......... 45
1.7.2 Asymptotic distribution of MLE . ........... 47
1.8 Model selection .............. ........ . 47
1.9 Bibliographic notes ....... ............... . 49
2 Generalized Regression Model 51
2.1 Examples of regression data .................. 51
2.2 Definition of generalized regression model . ........ . . 69
2.2.1 Response ................ ......... 710
2.2.2 Distributions of the components of response ...... 70
2.2.3 Regression function and regression parameter .... . 70
2.2.4 Regressors and model matrix (matrices) ....... . 71
2.2.5 Example ................... ..... . 72
2.3 Special cases of GRM ...................... 73
2.3.1 Assumptions on parts of GRM . ............ 73
2.3.2 Various special GRMs ......... . ...... . 74
2.4 Likelihood inference ..... .................. 75
2.5 MLE with iterative reweighted least squares ......... 76
2.6 Model checking ................... ....... 78
2.7 Bibliographic notes ................ ....... 79
3 General Linear Model 81
3.1 Definition of the general linear model . ............ 81
3.2 Estimate of regression coefficients . .............. 87
3.2.1 Least squares estimate (LSE) . ............. 87
3.2.2 Maximum likelihood estimate (MLE) ......... . .. 90
3.3 Test of linear hypotheses ................... . . 92
3.4 Confidence regions and intervals . ............... 95
3.4.1 Joint confidence regions for finite sets of linear combi-
nations . .................. . .. . . 95
3.4.2 Separate confidence intervals for linear combinations . 97
3.5 Model checking ................... . . . . . 100
3.6 Bibliographic notes ................... .... 103
4 Nonlinear Regression Model 107
4.1 Definition of nonlinear regression model . ........... 107
4.2 Estimate of regression parameters . .............. 109
4.2.1 Least squares estimate (LSE) of regression parameters 109
4.2.2 Maximum likelihood estimate (MLE) ......... . 112
4.3 Approximate distribution of LRT statistic . .......... 114
4.4 Profile likelihood-based confidence region . .......... 115
4.5 Profile likelihood-based confidence interval . ......... 115
4.6 LRT for a hypothesis on finite set of functions . ....... 121
4.7 Model checking ............................ . ... 123
4.8 Bibliographic notes .................. .... . 124
5 Generalized Linear Model 127
5.1 Definition of generalized linear model . ............ 127
5.1.1 Distribution, linear predictor, and link function . . .. 127
5.1.2 Examples of distributions generating generalized linear
models ............ ........ 129
5.2 MLE of regression coefficients . ................ 136
5.2.1 MLE ................... ....... . 136
5.2.2 Newton-Raphson and Fisher-scoring . ......... 138
5.3 Bibliographic notes ................... ... 140
6 Binomial and Logistic Regression Model 141
6.1 Data ............................... 141
6.2 Binomial distribution ................... ... 144
6.3 Link functions ........ .................. 146
6.3.1 Unparametrized link functions . ............ 146
6.3.2 Parametrized link functions . .............. 149
6.4 Likelihood inference ..... . .................. 151
6.4.1 Likelihood function of binomial data . ......... 151
6.4.2 Estimates of parameters . ................ 152
6.4.3 Likelihood ratio statistic or deviance function .... . 154
6.4.4 Distribution of deviance . ................ 154
6.4.5 Model checking ................... ... 156
6.5 Logistic regression model ................... . 157
6.6 Models with other link functions . ............... 163
6.7 Nonlinear binomial regression model . ............. 165
6.8 Bibliographic notes ................... ... 168
7 Poisson Regression Model 169
7.1 Data ................. ..... ....... 169
7.2 Poisson distribution ....................... 170
7.3 Link functions . ......................... 172
7.3.1 Unparametrized link functions . ............ 172
7.3.2 Parametrized link functions . .............. 175
7.4 Likelihood inference . ...................... 176
7.4.1 Likelihood function of Poisson data ........... 176
7.4.2 Estimates of parameters . ................ 177
7.4.3 Likelihood ratio statistic or deviance function .... . 179
7.4.4 Distribution of deviance . ................ 179
7.4.5 Model checking ................... ... 181
7.5 Log-linear model ......................... 182
7.6 Bibliographic notes . ........ ........ ..... 187
8 Multinornial Regression Model 189
8.1 Data ............................... 189
8.2 Multinomial distribution ............... ..... 191
8.3 Likelihood function ........... ........... . 191
8.4 Logistic multinoinial regression model ........ ..... 193
8.5 Proportional odds regression model . ............. 195
8.6 Bibliographic notes ................... ... 199
9 Other Generalized Linear Regressions Models 201
9.1 Negative binomial regression model . ............. 201
9.1.1 Data ....... ....... .... . ........ . 201
9.1.2 Negative binomial distribution . ............ 203
9.1.3 Likelihood inference . .................. 204
9.1.4 Negative binomial logistic regression model ...... 208
9.2 Gamma regression model . ............... ... 211
9.2.1 Data ................... ....... . 211
9.2.2 Gamma distribution ...... ............. 211
9.2.3 Link function ................... .. . 213
9.2.4 Likelihood inference . .................. 214
9.2.5 Model checking ................... ... 221
10 Other Generalized Regression Models 225
10.1 Weighted general linear model . ................ 225
10.1.1 Model ......... ..... ............ 225
10.1.2 Weighted linear regression model as GRM ....... 226
10.2 Weighted nonlinear regression model . ............. 229
10.2.1 Model........ .................. 229
10.2.2 Weighted nonlinear regression model as GRM ..... 230
10.3 Quality design or Taguchi model .......... ...... 231
10.4 Lifetime regression model ................... . 237
10.5 Cox regression model ........... ........... 240
10.6 Bibliographic notes ................... ... 248
A Datasets 251
B Notation Used for Statistical Models 271
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×
亲爱的云图用户,
光盘内的文件都可以直接点击浏览哦
无需下载,在线查阅资料!