Chemical engineering dynamics : an introduction to modelling and computer simulation

副标题:无

作   者:Ingham, John

分类号:

ISBN:9783527316786

微信扫一扫,移动浏览光盘

简介

  In Chemical Engineering Dynamics , the modelling of dynamic chemical engineering processes is presented in a highly understandable way using the unique combination of simplified fundamental theory and direct hands-on computer simulation. The mathematics is kept to a minimum, and yet the nearly 100 examples supplied on a CD-ROM illustrate almost every aspect of chemical engineering science. Each example is described in detail, including the model equations. They are written in the modern user-friendly simulation language Berkeley Madonna, which can be run on both Windows PC and Power-Macintosh computers. Madonna solves models comprising many ordinary differential equations using very simple programming, including arrays. It is so powerful that the model parameters may be defined as "sliders", which allow the effect of their change on the model behavior to be seen almost immediately. Data may be included for curve fitting, and sensitivity or multiple runs may be performed. The results can be seen simultaneously on multiple-graph windows or by using overlays. The resultant learning effect of this is tremendous. The examples can be varied to fit any real situation, and the suggested exercises provide practical guidance. The extensive experience of the authors, both in university teaching and international courses, is reflected in this well-balanced presentation, which is suitable for the teacher, the student, the chemist or the engineer. This book provides a greater understanding of the formulation and use of mass and energy balances for chemical engineering, in a most stimulating manner. This book is a third edition, which also includes biological, environmental and food process examples.  

目录

Contents 7
Preface 15
Acknowledgements 17
Nomenclature for Chapters 1\u20134 19
1 Basic Concepts 25
1.1 Modelling Fundamentals 25
1.1.1 Chemical Engineering Modelling 25
1.1.2 General Aspects of the Modelling Approach 27
1.1.3 General Modelling Procedure 27
1.2 Formulation of Dynamic Models 28
1.2.1 Material Balance Equations 28
1.2.2 Balancing Procedures 30
1.2.2.1 Case A: Continuous Stirred-Tank Reactor 31
1.2.2.2 Case B: Tubular Reactor 31
1.2.2.3 Case C: Coffee Percolator 32
1.2.3 Total Material Balances 40
1.2.3.1 Case A: Tank Drainage 41
1.2.4 Component Balances 42
1.2.4.1 Case A: Waste Holding Tank 43
1.2.4.2 Case B: Extraction from a Solid by a Solvent 44
1.2.5 Energy Balancing 46
1.2.5.1 Case A: Continuous Heating in an Agitated Tank 51
1.2.5.2 Case B: Heating in a Filling Tank 52
1.2.5.3 Case C: Parallel Reaction in a Semi-Continuous Reactor with Large Temperature Changes 53
1.2.6 Momentum Balances 55
1.2.7 Dimensionless Model Equations 55
1.2.7.1 Case A: Continuous Stirred-Tank Reactor (CSTR) 56
1.2.7.2 Case B: Gas-Liquid Mass Transfer to a Continuous Tank Reactor with Chemical Reaction 58
1.3 Chemical Kinetics 59
1.3.1 Rate of Chemical Reaction 59
1.3.2 Reaction Rate Constant 62
1.3.3 Heat of Reaction 63
1.3.4 Chemical Equilibrium and Temperature 63
1.3.5 Yield, Conversion and Selectivity 63
1.3.6 Microbial Growth Kinetics 65
1.4 Mass Transfer Theory 67
1.4.1 Stagewise and Differential Mass Transfer Contacting 67
1.4.2 Phase Equilibria 69
1.4.3 Interphase Mass Transfer 70
2 Process Dynamics Fundamentals 75
2.1 Signal and Process Dynamics 75
2.1.1 Measurement and Process Response 75
2.1.1.1 First-Order Response to an Input Step-Change Disturbance 75
2.1.1.2 Case A: Concentration Response of a Continuous Flow, Stirred Tank 76
2.1.1.3 Case B: Concentration Response in a Continuous Stirred Tank with Chemical Reaction 78
2.1.1.4 Case C: Response of a Temperature Measuring Element 79
2.1.1.5 Case D: Measurement Lag for Concentration in a Batch Reactor 81
2.1.2 Higher Order Responses 82
2.1.2.1 Case A: Multiple Tanks in Series 82
2.1.2.2 Case B: Response of a Second-Order Temperature Measuring Element 84
2.1.3 Pure Time Delay 85
2.1.4 Transfer Function Representation 86
2.2 Time Constants 87
2.2.1 Common Time Constants 88
2.2.1.1 Flow Phenomena 88
2.2.1.2 Diffusion\u2013Dispersion 89
2.2.1.3 Chemical Reaction 89
2.2.1.4 Mass Transfer 89
2.2.1.5 Heat Transfer 91
2.2.2 Application of Time Constants 91
2.3 Fundamentals of Automatic Control 92
2.3.1 Basic Feedback Control 92
2.3.2 Types of Controller Action 93
2.3.2.1 On/Off Control 94
2.3.2.2 Proportional-Integral-Derivative (PID) Control 94
2.3.2.3 Case A: Operation of a Proportional Temperature Controller 96
2.3.3 Controller Tuning 97
2.3.3.1 Trial and Error Method 98
2.3.3.2 Ziegler\u2013Nichols Open-Loop Method 98
2.3.3.3 Cohen\u2013Coon Controller Settings 99
2.3.3.4 Ultimate Gain Method 99
2.3.3.5 Time Integral Criteria 100
2.3.4 Advanced Control Strategies 100
2.3.4.1 Cascade Control 100
2.3.4.2 Feedforward Control 101
2.3.4.3 Adaptive Control 102
2.3.4.4 Sampled Data or Discrete Control Systems 102
2.4 Numerical Aspects of Dynamic Behaviour 103
2.4.1 Optimisation 103
2.4.1.1 Case A: Optimal Cooling for a Reactor with an Exothermic Reversible Reaction 103
2.4.2 Parameter Estimation 105
2.4.2.1 Non-Linear Systems Parameter Estimation 106
2.4.2.2 Case B: Estimation of Rate and Equilibrium Constants in a Reversible Esterification Reaction Using MADONNA 107
2.4.3 Sensitivity Analysis 109
2.4.4 Numerical Integration 112
2.4.5 System Stability 115
3 Modelling of Stagewise Processes 117
3.1 Introduction 117
3.2 Stirred-Tank Reactors 117
3.2.1 Reactor Configurations 117
3.2.2 Generalised Model Description 119
3.2.2.1 Total Material Balance Equation 119
3.2.2.2 Component Balance Equation 119
3.2.2.3 Energy Balance Equation 119
3.2.2.4 Heat Transfer to and from Reactors 120
3.2.2.5 Steam Heating in Jackets 123
3.2.2.6 Dynamics of the Metal Jacket Wall 124
3.2.3 The Batch Reactor 126
3.2.3.1 Case A: Constant-Volume Batch Reactor 127
3.2.4 The Semi-Batch Reactor 128
3.2.4.1 Case B: Semi-Batch Reactor 130
3.2.5 The Continuous Stirred-Tank Reactor 130
3.2.5.1 Case C: Constant-Volume Continuous Stirred-Tank Reactor 133
3.2.6 Stirred-Tank Reactor Cascade 133
3.2.7 Reactor Stability 134
3.2.8 Reactor Control 139
3.2.9 Chemical Reactor Safety 141
3.2.9.1 The Runaway Scenario 142
3.2.9.2 Reaction Calorimetry 142
3.2.10 Process Development in the Fine Chemical Industry 143
3.2.11 Chemical Reactor Waste Minimisation 144
3.2.12 Non-Ideal Flow 147
3.2.13 Tank-Type Biological Reactors 148
3.2.13.1 The Batch Fermenter 150
3.2.13.2 The Chemostat 150
3.2.13.3 The Feed Batch Fermenter 152
3.3 Stagewise Mass Transfer 153
3.3.1 Liquid\u2013Liquid Extraction 153
3.3.1.1 Single Batch Extraction 154
3.3.1.2 Multisolute Batch Extraction 156
3.3.1.3 Continuous Equilibrium Stage Extraction 157
3.3.1.4 Multistage Countercurrent Extraction Cascade 160
3.3.1.5 Countercurrent Extraction Cascade with Backmixing 161
3.3.1.6 Countercurrent Extraction Cascade with Slow Chemical Reaction 163
3.3.1.7 Multicomponent Systems 164
3.3.1.8 Control of Extraction Cascades 165
3.3.1.9 Mixer-Settler Extraction Cascades 166
3.3.1.10 Staged Extraction Columns 173
3.3.1.11 Column Hydrodynamics 176
3.3.2 Stagewise Absorption 177
3.3.3 Stagewise Distillation 180
3.3.3.1 Simple Overhead Distillation 180
3.3.3.2 Binary Batch Distillation 182
3.3.3.3 Continuous Binary Distillation 186
3.3.3.4 Multicomponent Separations 189
3.3.3.5 Plate Efficiency 190
3.3.3.6 Complex Column Simulations 191
3.3.4 Multicomponent Steam Distillation 192
4 Differential Flow and Reaction Applications 197
4.1 Introduction 197
4.1.1 Dynamic Simulation 197
4.1.2 Steady-State Simulation 198
4.2 Diffusion and Heat Conduction 199
4.2.1 Unsteady-State Diffusion through a Porous Solid 199
4.2.2 Unsteady-State Heat Conduction and Diffusion in Spherical and Cylindrical Coordinates 202
4.2.3 Steady-State Diffusion with Homogeneous Chemical Reaction 203
4.3 Tubular Chemical Reactors 204
4.3.1 The Plug-Flow Tubular Reactor 205
4.3.2 Liquid-Phase Tubular Reactors 209
4.3.3 Gas-Phase Tubular Reactors 210
4.3.4 Batch Reactor Analogy 213
4.3.5 Dynamic Simulation of the Plug-Flow Tubular Reactor 214
4.3.6 Dynamics of an Isothermal Tubular Reactor with Axial Dispersion 217
4.3.6.1 Dynamic Difference Equation for the Component Balance Dispersion Model 217
4.3.7 Steady-State Tubular Reactor Dispersion Model 220
4.4 Differential Mass Transfer 223
4.4.1 Steady-State Gas Absorption with Heat Effects 223
4.4.1.1 Steady-State Design 224
4.4.1.2 Steady-State Simulation 225
4.4.2 Dynamic Modelling of Plug-Flow Contactors: Liquid\u2013Liquid Extraction Column Dynamics 226
4.4.3 Dynamic Modelling of a Liquid\u2013Liquid Extractor with Axial Mixing in Both Phases 229
4.4.4 Dynamic Modelling of Chromatographic Processes 231
4.4.4.1 Axial Dispersion Model for a Chromatography Column 232
4.4.4.2 Dynamic Difference Equation Model for Chromatography 233
4.5 Heat Transfer Applications 237
4.5.1 Steady-State Tubular Flow with Heat Loss 237
4.5.2 Single-Pass, Shell-and-Tube, Countercurrent-Flow Heat Exchanger 238
4.5.2.1 Steady-State Applications 238
4.5.2.2 Heat Exchanger Dynamics 239
4.6 Difference Formulae for Partial Differential Equations 243
4.7 References Cited in Chapters 1 to 4 244
4.8 Additional Books Recommended 246
5 Simulation Tools and Examples of Chemical Engineering Processes 249
5.1 Simulation Tools 250
5.1.1 Simulation Software 250
5.1.2 Teaching Applications 251
5.1.3 Introductory MADONNA Example: BATSEQ-Complex Reaction Sequence 251
5.2 Batch Reactor Examples 256
5.2.1 BATSEQ \u2013 Complex Batch Reaction Sequence 256
5.2.2 BATCHD \u2013 Dimensionless Kinetics in a Batch Reactor 259
5.2.3 COMPREAC \u2013 Complex Reaction 261
5.2.4 BATCOM \u2013 Batch Reactor with Complex Reaction Sequence 264
5.2.5 CASTOR \u2013 Batch Decomposition of Acetylated Castor Oil 267
5.2.6 HYDROL \u2013 Batch Reactor Hydrolysis of Acetic Anhydride 271
5.2.7 OXIBAT \u2013 Oxidation Reaction in an Aerated Tank 274
5.2.8 RELUY \u2013 Batch Reactor of Luyben 277
5.2.9 DSC \u2013 Differential Scanning Calorimetry 282
5.2.10 ESTERFIT \u2013 Esterification of Acetic Acid with Ethanol. Data Fitting 285
5.3 Continuous Tank Reactor Examples 289
5.3.1 CSTRCOM \u2013 Isothermal Reactor with Complex Reaction 289
5.3.2 DEACT \u2013 Deactivating Catalyst in a CSTR 292
5.3.3 TANK and TANKDIM \u2013 Single Tank with Nth-Order Reaction 294
5.3.4 CSTRPULSE \u2013 Continuous Stirred-Tank Cascade Tracer Experiment 297
5.3.5 CASCSEQ \u2013 Cascade of Three Reactors with Sequential Reactions 300
5.3.6 REXT \u2013 Reaction with Integrated Extraction of Inhibitory Product 304
5.3.7 THERM and THERMPLOT \u2013 Thermal Stability of a CSTR 307
5.3.8 COOL \u2013 Three-Stage Reactor Cascade with Countercurrent Cooling 311
5.3.9 OSCIL \u2013 Oscillating Tank Reactor Behaviour 314
5.3.10 REFRIG1 and REFRIG2 \u2013 Auto-Refrigerated Reactor 319
5.3.11 REVTEMP \u2013 Reversible Reaction with Variable Heat Capacities 323
5.3.12 REVREACT \u2013 Reversible Reaction with Temperature Effects 329
5.3.13 HOMPOLY Homogeneous Free-Radical Polymerisation 334
5.4 Tubular Reactor Examples 339
5.4.1 TUBE and TUBEDIM \u2013 Tubular Reactor Model for the Steady State 339
5.4.2 TUBETANK \u2013 Design Comparison for Tubular and Tank Reactors 341
5.4.3 BENZHYD \u2013 Dehydrogenation of Benzene 344
5.4.4 ANHYD \u2013 Oxidation of O-Xylene to Phthalic Anhydride 348
5.4.5 NITRO \u2013 Conversion of Nitrobenzene to Aniline 353
5.4.6 TUBDYN \u2013 Dynamic Tubular Reactor 356
5.4.7 DISRE \u2013 Isothermal Reactor with Axial Dispersion 359
5.4.8 DISRET \u2013 Non-Isothermal Tubular Reactor with Axial Dispersion 364
5.4.9 VARMOL \u2013 Gas-Phase Reaction with Molar Change 368
5.5 Semi-Continuous Reactor Examples 371
5.5.1 SEMIPAR \u2013 Parallel Reactions in a Semi-Continuous Reactor 371
5.5.2 SEMISEQ \u2013 Sequential-Parallel Reactions in a Semi-Continuous Reactor 374
5.5.3 HMT \u2013 Semi-Batch Manufacture of Hexamethylenetetramine 377
5.5.4 RUN \u2013 Relief of a Runaway Polymerisation Reaction 379
5.5.5 SELCONT \u2013 Optimized Selectivity in a Semi-Continuous Reactor 386
5.5.6 SULFONATION \u2013 Space-Time-Yield and Safety in a Semi-Continuous Reactor 389
5.6 Mixing-Model Examples 398
5.6.1 NOCSTR \u2013 Non-Ideal Stirred-Tank Reactor 398
5.6.2 TUBEMIX \u2013 Non-Ideal Tube-Tank Mixing Model 402
5.6.3 MIXFLO1 and MIXFLO2 \u2013 Mixed\u2013Flow Residence Time Distribution Studies 405
5.6.4 GASLIQ1 and GASLIQ2 \u2013 Gas\u2013Liquid Mixing and Mass Transfer in a Stirred Tank 409
5.6.5 SPBEDRTD \u2013 Spouted Bed Reactor Mixing Model 414
5.6.6 BATSEG, SEMISEG and COMPSEG \u2013 Mixing and Segregation in Chemical Reactors 418
5.7 Tank Flow Examples 430
5.7.1 CONFLO 1, CONFLO 2 and CONFLO 3 \u2013 Continuous Flow Tank 430
5.7.2 TANKBLD \u2013 Liquid Stream Blending 433
5.7.3 TANKDIS \u2013 Ladle Discharge Problem 436
5.7.4 TANKHYD \u2013 Interacting Tank Reservoirs 440
5.8 Process Control Examples 444
5.8.1 TEMPCONT \u2013 Control of Temperature in a Water Heater 444
5.8.2 TWOTANK \u2013 Two Tank Level Control 448
5.8.3 CONTUN \u2013 Controller Tuning Problem 451
5.8.4 SEMIEX \u2013 Temperature Control for Semi-Batch Reactor 454
5.8.5 TRANSIM \u2013 Transfer Function Simulation 459
5.8.6 THERMFF \u2013 Feedforward Control of an Exothermic CSTR 461
5.9 Mass Transfer Process Examples 466
5.9.1 BATEX \u2013 Single Solute Batch Extraction 466
5.9.2 TWOEX \u2013 Two-Solute Batch Extraction with Interacting Equilibria 468
5.9.3 EQEX \u2013 Simple Equilibrium Stage Extractor 471
5.9.4 EQMULTI \u2013 Continuous Equilibrium Multistage Extraction 473
5.9.5 EQBACK \u2013 Multistage Extractor with Backmixing 477
5.9.6 EXTRACTCON \u2013 Extraction Cascade with Backmixing and Control 480
5.9.7 HOLDUP \u2013 Transient Holdup Profiles in an Agitated Extractor 483
5.9.8 KLADYN, KLAFIT and ELECTFIT \u2013 Dynamic Oxygen Electrode Method for K(L)a 486
5.9.9 AXDISP \u2013 Differential Extraction Column with Axial Dispersion 492
5.9.10 AMMONAB \u2013 Steady-State Design of a Gas Absorption Column with Heat Effects 495
5.9.11 MEMSEP \u2013 Gas Separation by Membrane Permeation 499
5.9.12 FILTWASH \u2013 Filter Washing 503
5.9.13 CHROMDIFF \u2013 Dispersion Rate Model for Chromatography Columns 507
5.9.14 CHROMPLATE \u2013 Stagewise Linear Model for Chromatography Columns 510
5.10 Distillation Process Examples 514
5.10.1 BSTILL \u2013 Binary Batch Distillation Column 514
5.10.2 DIFDIST \u2013 Multicomponent Differential Distillation 518
5.10.3 CONSTILL \u2013 Continuous Binary Distillation Column 520
5.10.4 MCSTILL \u2013 Continuous Multicomponent Distillation Column 525
5.10.5 BUBBLE \u2013 Bubble Point Calculation for a Batch Distillation Column 528
5.10.6 STEAM \u2013 Multicomponent, Semi-Batch Steam Distillation 532
5.11 Heat Transfer Examples 535
5.11.1 HEATEX \u2013 Dynamics of a Shell-and-Tube Heat Exchanger 535
5.11.2 SSHEATEX \u2013 Steady-State, Two-Pass Heat Exchanger 539
5.11.3 ROD \u2013 Radiation from Metal Rod 542
5.12 Diffusion Process Examples 545
5.12.1 DRY \u2013 Drying of a Solid 545
5.12.2 ENZSPLIT \u2013 Diffusion and Reaction: Split Boundary Solution 549
5.12.3 ENZDYN \u2013 Dynamic Diffusion with Enzymatic Reaction 553
5.12.4 BEAD \u2013 Diffusion and Reaction in a Spherical Catalyst Bead 557
5.13 Biological Reaction Examples 562
5.13.1 BIOREACT \u2013 Process Modes for a Bioreactor 562
5.13.2 INHIBCONT \u2013 Continuous Bioreactor with Inhibitory Substrate 567
5.13.3 NITBED \u2013 Nitrification in a Fluidised Bed Reactor 571
5.13.4 BIOFILM \u2013 Biofilm Tank Reactor 575
5.13.5 BIOFILT \u2013 Biofiltration Column for Removing Ketone from Air 579
5.14 Environmental Examples 584
5.14.1 BASIN \u2013 Dynamics of an Equalisation Basin 584
5.14.2 METAL \u2013 Transport of Heavy Metals in Water Column and Sediments 589
5.14.3 OXSAG \u2013 Classic Streeter-Phelps Oxygen Sag Curves 593
5.14.4 DISCHARGE \u2013 Dissolved Oxygen and BOD Steady-State Profiles Along a River 596
5.14.5 ASCSTR \u2013 Continuous Stirred Tank Reactor Model of Activated Sludge 601
5.14.6 DEADFISH \u2013 Distribution of an Insecticide in an Aquatic Ecosystem 605
5.14.7 LEACH \u2013 One-Dimensional Transport of Solute Through Soil 608
5.14.8 SOIL \u2013 Bioremediation of Soil Particles 615
Appendix: Using the MADONNA Language 621
1 A Short Guide to MADONNA 621
2 Screenshot Guide to BERKELEY-MADONNA 626
3 List of Simulation Examples 630
Subject Index 633

已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

Chemical engineering dynamics : an introduction to modelling and computer simulation
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    亲爱的云图用户,
    光盘内的文件都可以直接点击浏览哦

    无需下载,在线查阅资料!

    loading icon