RF Circuit Design Theory and Applications
副标题:无
作 者:()Reinhold Ludwig Ludwig,()Pavel Bretchko著
分类号:
ISBN:9787030101358
微信扫一扫,移动浏览光盘
简介
本书为国外高校电子信息类优秀教材(英文影印版)之一。
本书在重点介绍射频电路设计理论的同时介绍其设计方法。主要内容有发射线路、Smith图、单点和多点网络、射频过滤设计、有源射频元件及模式、匹配和偏压网络、射频晶体管放大器设计以及振荡器和混频器等。
本书适用于高等院校通信、电子工程及相关专业的本科生,也可供一般工程技术人员参考。
目录
preface
chapter 1. introduction
1.1 importance of radio frequency design
1.2 dimensions and units
1.3 frequency spectrum
1.4 rf behavior of passive components
1.4.1 high-frequency resistors
1.4.2 high-frequency capacitors
1.4.3 high-frequency inductors
1.5 chip components and circuit board considerations
1.5.1 chip resistors
1.5.2 chip capacitors
1.5.3 surface-mounted inductors
1.6 summary
chapter 2. transmission line analysis
2.1 why transmission line theory?
2.2 examples of transmission lines
2.2.1 two-wire lines
2.2.2 coaxial line
2.2.3 micro strip lines
.2.3 equivalent circuit representation
2.4 theoretical foundation
2.4.l basic laws
2.5 circuit parameters for a parallel plate transmission line
2.6 summary of different line configurations
2.7 general transmission line equation
2.7.l kirchhoff voltage and current law representations
2.7.2 traveling voltage and current waves
2.7.3 general impedance definition
2.7.4 lossless transmission line model
2.8 microstrip transmission lines
2.9 terminated lossless transmission line
2.9.1 voltage reflection coefficient
2.9.2 propagation constant and phase velocity
2.9.3 standing waves
2.10 special termination conditions
2.10.1 input impedance of terminated lossless line
2.10.2 short circuit transmission line
2.10.3 open-circuit transmission line
2.10.4 quarter-wave transmission line
2.11 sourced and loaded transmission line
2.11.1 phasor representation of source
2.11.2 power considerations for a transmission line
2.11.3 input impedance matching
2.11.4 return loss and insertion loss
2.12 summary
chapter 3. the smith chart
3.1 from reflection coefficient to load impedance
3.1.l reflection coefficient in phasor form
3.1.2 normalized impedance equation
3.1.3 parametric reflection coefficient equation
3.1.4 graphical representation
3.2 impedance transformation
3.2.1 impedance transformation for general load
3.2.2 standing we ratio
3.2.3 special transform hon conditions
3.2.4 computer simulations
3.3 admittance transformation
3.3.1 parenthetic admittance equation
3.3.2 additional graphical displays
3.4 parallel and series connections
3.4.1 parallel connection of r and l elements
3.4.2 parallel connection of r and c elements
3.4.3 series connection of r and l elements
3.4.4 series connection of r and c elements
3.4.5 example of a t-network
3.5 summary
chapter 4. single- and multiport networks
4.1 basic definitions
4.2 interconnecting networks
4.2.1 series connection of networks
4.2.2 parallel connection of networks
4.2.3 cascading networks
4.2.4 summary of abcd network representations
4.3 network properties and applications
4.3.1 interrelations between parameter sets
4.3.2 analysis of microwave amplifier
4.4 scattering parameters
4.4.1 definition of scattering parameters
4.4.2 meaning of s-parameters
4.4.3 chain scattering matrix
4.4.4 conversion between z and s-parameters
4.4.5 signal flow chart modeling
4.4.6 generalization of s-parameters
4.4.7 piratical measurements of s-parameters
4.5 summary
chapter 5. an overview of rf filter design
5.1 basic resonator and filter configurations
5.1.1 filter types and parameters
5.1.2 low-pass filter
5.1.3 high-pass filter
5.1.4 bandpass and bandstop filters
5.1.5 insertion loss
5.2 special filter realizations
5.2.1 butter worth-type filters
5.2.2 chebyshev-type filters
5.2.3 renormalization of standard low-pass design
5.3 filter implementation
5.3.1 unit elements
5.3.2 kuroda's identities
5.3.3 examples of microstrip filter design
5.4 coupled filter
5.4.1 odd and even mode excitation
5.4.2 bandpass filter section
5.4.3 cascading bandpass filter elements
5.4.4 design example
5.5 summary
chapter 6. active rf components
6.1 semiconductor basics
6.1.1 physical properties of semiconductors
6.1.2 pn-junchon
6.1.3 schottky contact
6.2 rf diodes
6.2.1 schottk diode
6.2.2 pin diode
6.2.3 varactor diode
6.2.4 impatt diode
6.2.5 tunnel diode
6.2.6 trapatt baritt, and gunn diodes
6.3 bipolar-junction transistor
6.3.1 construction
6.3.2 functionality
6.3.3 frequency response
6.3.4 temperature behavior
6.3.5 limiting values
6.4 rf field effect transistors
6.4.1 construction
6.4.2 functionality
6.4.3 frequency response
6.4.4 limiting values
6.5 high electron mobility transistors
6.5.1 construction
6.5.2 functionality
6.5.3 frequency response
6.6 summary
chapter 7. active rf component modeling
7.1 diode models
7.1.1 nonlinear diode model
7.1.2 linear diode model
7.2 transistor models
7.2.1 large-signal bjt models
7.2.2 small-signal bjt models
7.2.3 large-signal fet models
7.2.4 small-signal fet models
7.3 measurement of active devices
7.3.l dc characterization of bipolar transistor
7.3.2 measurements of ac parameters of bipolar transistor
7.3.3 measurements of field effect 1yansistor parameter
7.4 scattering parameters device characterization
7.5 summary
chapter 8. matching and biasing networks
8.l impedance matching using discrete components
8.l.l two-component matching networks
8.1.2 forbidden regions, frequency response, and quality factor
8.1.3 t and pi matching networks
8.2 microstrip line matching networks
8.2.l from discrete components to microstrip lines
8.2.2 single-stub matching networks
8.2.3 double-stub matching networks
8.3 amplifier classes of operation and biasing networks
8.3.l classes of operation and efficiency of amplifiers
8.3.2 bipolar transistor biasing networks
8.3.3 field effect transistor biasing networks
8.4 summary
chapter 9. rf transistor amplifier designs
9.l characteristics of amplifiers
9.2 amplifier power relations
9.2.l rf source
9.2.2 transducer power gain
9.2.3 additional power relations
9.3 stability considerations
9.3.l stability circles
9.3.2 unconditional stability
9.3.3 stabilization methods
9.4 constant gain
9.4.1 unilateral design
9.4.2 unilateral figure of merit
9.4.3 bilateral design
9.4.4 operating and available power gain circles
9.5 noise figure circles
9.6 constant vswr circles
9.7 broadband, high-power, and multistage amplifiers
9.7.1 broadband amplifiers
9.7.2 high-power amplifiers
9.7.3 multistage amplifiers
9.8 summary
chapter 10. oscillators and misers
10.1 basic oscillator model
10.1.1 negative resistance oscillator
10.1.2 feedback oscillator design
10.1.3 design steps
10.1.4 quartz oscillators
10.2 high-frequency oscillator configuration
10.2.1 fixed-frequency oscillators
10.2.2 dielectric resonator oscillators
10.2.3 yig-tuned oscillator
10.2.4 voltage-controlled oscillator
10.2.5 gunn element oscillator
10.3 basic characteristics of mixers
10.3.1 basic concepts
10.3.2 frequency domain considering
10.3.3 single-ended mixer design
10.3.4 single-balanced mixer
10.3.5 double-balanced mixer
10.4 summary
appendix a. useful physical quantities and units
appendix b. skin equation for a cylindrical conductor
appendix c. complex numbers
c.1 basic definition
c.2 magnitude computations
c.3 circle equation
appendix d. matrix conversions
appendix e. physical parameters of semiconductors
appendix e long and short diode models
f.1 long diode
f.2 short diode
appendix g. couplers
g.1 wilkinson divider
g.2 branch line coupler
g.3 lange coupler
appendix h. noise analysis
h.1 basic definitions
h.2 noisy two-port networks
h.3 noise figure for the port network
h.4 noise figure for cascaded multiport network
appendix i. introduction to matlab
i.1 background
i.2 brief example of stability evaluation
i.3 simulation software on compact disk
i.3.1 overview
i.3.2 software installation
i.3.3 file organization
index
chapter 1. introduction
1.1 importance of radio frequency design
1.2 dimensions and units
1.3 frequency spectrum
1.4 rf behavior of passive components
1.4.1 high-frequency resistors
1.4.2 high-frequency capacitors
1.4.3 high-frequency inductors
1.5 chip components and circuit board considerations
1.5.1 chip resistors
1.5.2 chip capacitors
1.5.3 surface-mounted inductors
1.6 summary
chapter 2. transmission line analysis
2.1 why transmission line theory?
2.2 examples of transmission lines
2.2.1 two-wire lines
2.2.2 coaxial line
2.2.3 micro strip lines
.2.3 equivalent circuit representation
2.4 theoretical foundation
2.4.l basic laws
2.5 circuit parameters for a parallel plate transmission line
2.6 summary of different line configurations
2.7 general transmission line equation
2.7.l kirchhoff voltage and current law representations
2.7.2 traveling voltage and current waves
2.7.3 general impedance definition
2.7.4 lossless transmission line model
2.8 microstrip transmission lines
2.9 terminated lossless transmission line
2.9.1 voltage reflection coefficient
2.9.2 propagation constant and phase velocity
2.9.3 standing waves
2.10 special termination conditions
2.10.1 input impedance of terminated lossless line
2.10.2 short circuit transmission line
2.10.3 open-circuit transmission line
2.10.4 quarter-wave transmission line
2.11 sourced and loaded transmission line
2.11.1 phasor representation of source
2.11.2 power considerations for a transmission line
2.11.3 input impedance matching
2.11.4 return loss and insertion loss
2.12 summary
chapter 3. the smith chart
3.1 from reflection coefficient to load impedance
3.1.l reflection coefficient in phasor form
3.1.2 normalized impedance equation
3.1.3 parametric reflection coefficient equation
3.1.4 graphical representation
3.2 impedance transformation
3.2.1 impedance transformation for general load
3.2.2 standing we ratio
3.2.3 special transform hon conditions
3.2.4 computer simulations
3.3 admittance transformation
3.3.1 parenthetic admittance equation
3.3.2 additional graphical displays
3.4 parallel and series connections
3.4.1 parallel connection of r and l elements
3.4.2 parallel connection of r and c elements
3.4.3 series connection of r and l elements
3.4.4 series connection of r and c elements
3.4.5 example of a t-network
3.5 summary
chapter 4. single- and multiport networks
4.1 basic definitions
4.2 interconnecting networks
4.2.1 series connection of networks
4.2.2 parallel connection of networks
4.2.3 cascading networks
4.2.4 summary of abcd network representations
4.3 network properties and applications
4.3.1 interrelations between parameter sets
4.3.2 analysis of microwave amplifier
4.4 scattering parameters
4.4.1 definition of scattering parameters
4.4.2 meaning of s-parameters
4.4.3 chain scattering matrix
4.4.4 conversion between z and s-parameters
4.4.5 signal flow chart modeling
4.4.6 generalization of s-parameters
4.4.7 piratical measurements of s-parameters
4.5 summary
chapter 5. an overview of rf filter design
5.1 basic resonator and filter configurations
5.1.1 filter types and parameters
5.1.2 low-pass filter
5.1.3 high-pass filter
5.1.4 bandpass and bandstop filters
5.1.5 insertion loss
5.2 special filter realizations
5.2.1 butter worth-type filters
5.2.2 chebyshev-type filters
5.2.3 renormalization of standard low-pass design
5.3 filter implementation
5.3.1 unit elements
5.3.2 kuroda's identities
5.3.3 examples of microstrip filter design
5.4 coupled filter
5.4.1 odd and even mode excitation
5.4.2 bandpass filter section
5.4.3 cascading bandpass filter elements
5.4.4 design example
5.5 summary
chapter 6. active rf components
6.1 semiconductor basics
6.1.1 physical properties of semiconductors
6.1.2 pn-junchon
6.1.3 schottky contact
6.2 rf diodes
6.2.1 schottk diode
6.2.2 pin diode
6.2.3 varactor diode
6.2.4 impatt diode
6.2.5 tunnel diode
6.2.6 trapatt baritt, and gunn diodes
6.3 bipolar-junction transistor
6.3.1 construction
6.3.2 functionality
6.3.3 frequency response
6.3.4 temperature behavior
6.3.5 limiting values
6.4 rf field effect transistors
6.4.1 construction
6.4.2 functionality
6.4.3 frequency response
6.4.4 limiting values
6.5 high electron mobility transistors
6.5.1 construction
6.5.2 functionality
6.5.3 frequency response
6.6 summary
chapter 7. active rf component modeling
7.1 diode models
7.1.1 nonlinear diode model
7.1.2 linear diode model
7.2 transistor models
7.2.1 large-signal bjt models
7.2.2 small-signal bjt models
7.2.3 large-signal fet models
7.2.4 small-signal fet models
7.3 measurement of active devices
7.3.l dc characterization of bipolar transistor
7.3.2 measurements of ac parameters of bipolar transistor
7.3.3 measurements of field effect 1yansistor parameter
7.4 scattering parameters device characterization
7.5 summary
chapter 8. matching and biasing networks
8.l impedance matching using discrete components
8.l.l two-component matching networks
8.1.2 forbidden regions, frequency response, and quality factor
8.1.3 t and pi matching networks
8.2 microstrip line matching networks
8.2.l from discrete components to microstrip lines
8.2.2 single-stub matching networks
8.2.3 double-stub matching networks
8.3 amplifier classes of operation and biasing networks
8.3.l classes of operation and efficiency of amplifiers
8.3.2 bipolar transistor biasing networks
8.3.3 field effect transistor biasing networks
8.4 summary
chapter 9. rf transistor amplifier designs
9.l characteristics of amplifiers
9.2 amplifier power relations
9.2.l rf source
9.2.2 transducer power gain
9.2.3 additional power relations
9.3 stability considerations
9.3.l stability circles
9.3.2 unconditional stability
9.3.3 stabilization methods
9.4 constant gain
9.4.1 unilateral design
9.4.2 unilateral figure of merit
9.4.3 bilateral design
9.4.4 operating and available power gain circles
9.5 noise figure circles
9.6 constant vswr circles
9.7 broadband, high-power, and multistage amplifiers
9.7.1 broadband amplifiers
9.7.2 high-power amplifiers
9.7.3 multistage amplifiers
9.8 summary
chapter 10. oscillators and misers
10.1 basic oscillator model
10.1.1 negative resistance oscillator
10.1.2 feedback oscillator design
10.1.3 design steps
10.1.4 quartz oscillators
10.2 high-frequency oscillator configuration
10.2.1 fixed-frequency oscillators
10.2.2 dielectric resonator oscillators
10.2.3 yig-tuned oscillator
10.2.4 voltage-controlled oscillator
10.2.5 gunn element oscillator
10.3 basic characteristics of mixers
10.3.1 basic concepts
10.3.2 frequency domain considering
10.3.3 single-ended mixer design
10.3.4 single-balanced mixer
10.3.5 double-balanced mixer
10.4 summary
appendix a. useful physical quantities and units
appendix b. skin equation for a cylindrical conductor
appendix c. complex numbers
c.1 basic definition
c.2 magnitude computations
c.3 circle equation
appendix d. matrix conversions
appendix e. physical parameters of semiconductors
appendix e long and short diode models
f.1 long diode
f.2 short diode
appendix g. couplers
g.1 wilkinson divider
g.2 branch line coupler
g.3 lange coupler
appendix h. noise analysis
h.1 basic definitions
h.2 noisy two-port networks
h.3 noise figure for the port network
h.4 noise figure for cascaded multiport network
appendix i. introduction to matlab
i.1 background
i.2 brief example of stability evaluation
i.3 simulation software on compact disk
i.3.1 overview
i.3.2 software installation
i.3.3 file organization
index
RF Circuit Design Theory and Applications
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×
亲爱的云图用户,
光盘内的文件都可以直接点击浏览哦
无需下载,在线查阅资料!