简介
Stochastic Simulation and Applications in Finance with MATLAB Programs explains the fundamentals of Monte Carlo simulation techniques, their use in the numerical resolution of stochastic differential equations and their current applications in finance. Building on an integrated approach, it provides a pedagogical treatment of the need-to-know materials in risk management and financial engineering.
目录
Table of contents
Table of contents v
Preface xi
Chapter 1 Introduction to probability 1
1 Intuitive explanation . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Frequencies . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Number of favorable cases over the total number of cases 2
2 Axiomatic definition . . . . . . . . . . . . . . . . . . . . . . . 2
2.1 Random experiment . . . . . . . . . . . . . . . . . . . 2
2.2 Event . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.3 Algebra of events . . . . . . . . . . . . . . . . . . . . 3
2.4 Probability axioms . . . . . . . . . . . . . . . . . . . . 4
2.5 Conditional probabilities . . . . . . . . . . . . . . . . . 5
2.6 Independent events . . . . . . . . . . . . . . . . . . . . 7
Chapter 2 Introduction to random variables 9
1 Random variables . . . . . . . . . . . . . . . . . . . . . . . . 9
1.1 Cumulative distribution function . . . . . . . . . . . . 10
1.2 Probability density function . . . . . . . . . . . . . . . 10
1.3 Mean, variance and higher moments of a random variable
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.4 Characteristic function of a random variable . . . . . . 20
2 Random vectors . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.1 Cumulative distribution function of a random vector . . 22
2.2 Probability density function of a random vector . . . . . 22
2.3 Marginal distribution of a random vector . . . . . . . . 23
2.4 Conditional distribution of a random vector . . . . . . . 24
2.5 Mean, variance and higher moments of a random vector 27
2.6 Characteristic function of a random vector . . . . . . . 29
3 Transformation of random variables . . . . . . . . . . . . . . . 30
4 Transformation of random vectors . . . . . . . . . . . . . . . . 34
5 Approximation of the standard normal cumulative distribution
function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
vi Stochastic Simulation and Applications in Finance
Chapter 3 Random sequences 39
1 Sum of independent random variables . . . . . . . . . . . . . . 39
2 Law of large numbers . . . . . . . . . . . . . . . . . . . . . . . 41
3 Central limit theorem . . . . . . . . . . . . . . . . . . . . . . . 42
4 Convergence of sequences of random variables . . . . . . . . . 44
4.1 Sure convergence . . . . . . . . . . . . . . . . . . . . 45
4.2 Almost sure convergence . . . . . . . . . . . . . . . . . 45
4.3 Convergence in probability . . . . . . . . . . . . . . . . 45
4.4 Convergence in quadratic mean . . . . . . . . . . . . . 45
Chapter 4 Introduction to computer simulation of random variables 47
1 Uniform random variable generator . . . . . . . . . . . . . . . 48
2 Generating discrete random variables . . . . . . . . . . . . . . 49
2.1 Finite discrete random variables . . . . . . . . . . . . . 49
2.2 Infinite discrete random variables: Poisson distribution . 51
3 Simulation of continuous random variables . . . . . . . . . . . 51
3.1 Cauchy distribution . . . . . . . . . . . . . . . . . . . . 52
3.2 Exponential law . . . . . . . . . . . . . . . . . . . . . 52
3.3 Rayleigh random variable . . . . . . . . . . . . . . . . 53
3.4 Gaussian distribution . . . . . . . . . . . . . . . . . . . 53
4 Simulation of random vectors . . . . . . . . . . . . . . . . . . . 55
4.1 Case of a two-dimensional random vector . . . . . . . . 56
4.2 Cholesky decomposition of the variance-covariance matrix 57
4.3 Eigenvalue decomposition of the variance-covariance matrix
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.4 Simulation of a Gaussian random vector with MATLAB 61
5 Acceptance-rejection method . . . . . . . . . . . . . . . . . . . 61
6 Markov Chain Monte Carlo Method (MCMC) . . . . . . . . . . 64
6.1 Definition of a Markov process . . . . . . . . . . . . . . 64
6.2 Description of the MCMC technique . . . . . . . . . . . 64
Chapter 5 Foundations of Monte Carlo simulations 67
1 Basic idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
2 Introduction to the concept of precision . . . . . . . . . . . . . 69
3 Quality of Monte Carlo simulations results . . . . . . . . . . . . 72
4 Improvement of the quality of Monte Carlo simulations or variance
reduction techniques . . . . . . . . . . . . . . . . . . . . . 75
4.1 Quadratic resampling . . . . . . . . . . . . . . . . . . . 75
4.2 Reduction of the number of simulations using antithetic
variables . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3 Reduction of the number of simulations using control
variates . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.4 Importance sampling . . . . . . . . . . . . . . . . . . . 81
5 Application cases of random variables simulations . . . . . . . . 86
5.1 Application case: Generation of random variables as a
function of the number of simulations . . . . . . . . . . 86
Front matter vii
5.2 Application case: Simulations and improvement of the
simulations? quality . . . . . . . . . . . . . . . . . . . . 88
Chapter 6 Fundamentals of Quasi Monte Carlo (QMC) simulations 93
1 Van Der Corput sequence (basic sequence) . . . . . . . . . . . . 94
2 Halton sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 95
3 Faure sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4 Sobol sequence . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5 Latin Hypercube sampling . . . . . . . . . . . . . . . . . . . . 103
6 Comparison of the different sequences . . . . . . . . . . . . . . 105
Chapter 7 Introduction to random processes 111
1 Characterization . . . . . . . . . . . . . . . . . . . . . . . . . . 111
1.1 Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 111
1.2 Stationarity . . . . . . . . . . . . . . . . . . . . . . . . 113
1.3 Ergodicity . . . . . . . . . . . . . . . . . . . . . . . . . 114
2 Notion of continuity, differentiability and integrability . . . . . . 114
2.1 Continuity . . . . . . . . . . . . . . . . . . . . . . . . 114
2.2 Differentiability . . . . . . . . . . . . . . . . . . . . . . 115
2.3 Integrability . . . . . . . . . . . . . . . . . . . . . . . . 115
3 Examples of random processes . . . . . . . . . . . . . . . . . . 116
3.1 Gaussian process . . . . . . . . . . . . . . . . . . . . . 116
3.2 Random walk . . . . . . . . . . . . . . . . . . . . . . . 117
3.3 Wiener process . . . . . . . . . . . . . . . . . . . . . . 118
3.4 Brownian bridge . . . . . . . . . . . . . . . . . . . . . 120
3.5 Fourier transform of a Brownian bridge . . . . . . . . . 122
3.6 Example of a Brownian bridge . . . . . . . . . . . . . . 122
Chapter 8 Solution of stochastic differential equations 125
1 Introduction to stochastic calculus . . . . . . . . . . . . . . . . 126
2 Introduction to stochastic differential equations . . . . . . . . . 128
2.1 Ito?s integral . . . . . . . . . . . . . . . . . . . . . . . 128
2.2 Ito?s lemma . . . . . . . . . . . . . . . . . . . . . . . 129
2.3 Ito?s lemma in the multi-dimensional case . . . . . . . . 132
2.4 Solutions of some stochastic differential equations . . . 133
3 Introduction to stochastic processes with jump . . . . . . . . . . 134
4 Numerical solutions of some stochastic differential equations
(SDE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.1 Ordinary differential equations . . . . . . . . . . . . . . 136
4.2 Stochastic differential equations . . . . . . . . . . . . . 138
5 Application case: Generation of a stochastic differential
equation using the Euler and Milstein schemes . . . . . . . . . . 141
5.1 Sensitivity with respect to the number of simulated series
. . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.2 Sensitivity with respect to the confidence interval . . . . 144
5.3 Sensitivity with respect to the number of simulations . . 144
5.4 Sensitivity with respect to the time step . . . . . . . . . 144
viii Stochastic Simulation and Applications in Finance
6 Application case: Simulation of a stochastic differential equation
with control and antithetic variables . . . . . . . . . . . . . 145
6.1 Simple simulations . . . . . . . . . . . . . . . . . . . . 145
6.2 Simulations with control variables . . . . . . . . . . . . 146
6.3 Simulations with antithetic variables . . . . . . . . . . . 147
7 Application case: Generation of a stochastic differential equation
with jumps . . . . . . . . . . . . . . . . . . . . . . . . . . 149
Chapter 9 General approach to the valuation of contingent claims 153
1 The Cox, Ross and Rubinstein (1979) binomial model of option
pricing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
1.1 Assumptions . . . . . . . . . . . . . . . . . . . . . . . 154
1.2 Price of a call option . . . . . . . . . . . . . . . . . . . 155
1.3 Extension to N periods . . . . . . . . . . . . . . . . . . 157
2 Black-Scholes-Merton (1973) option pricing model . . . . . . . 160
2.1 Fundamental equation for the valuation of contingent
claims . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
2.2 Exact analytical value of European call and put options . 162
2.3 Hedging ratios and the sensitivity coefficients . . . . . . 165
3 Derivation of the Black-Scholes formula using the risk-neutral
valuation principle . . . . . . . . . . . . . . . . . . . . . . . . 168
3.1 The Girsanov theorem and the risk-neutral probability . 168
3.2 Derivation of the Black and Scholes formula under the
risk neutralized or equivalent martingale principle . . . . 169
Chapter 10 Pricing options using Monte Carlo simulations 173
1 Plain vanilla options: European put and call . . . . . . . . . . . 173
1.1 Simple simulations . . . . . . . . . . . . . . . . . . . . 173
1.2 Simulations with antithetic variables . . . . . . . . . . 174
1.3 Simulations with control variates . . . . . . . . . . . . . 176
1.4 Simulations with stochastic interest rate . . . . . . . . . 180
1.5 Simulations with stochastic interest rate and stochastic
volatility . . . . . . . . . . . . . . . . . . . . . . . . . 183
2 American options . . . . . . . . . . . . . . . . . . . . . . . . . 186
2.1 Simulations using the Least-Squares Method of Longstaff
and Schwartz (2001) . . . . . . . . . . . . . . . . . . . 186
2.2 Simulations using the Dynamic Programming Technique
of Barraquand and Martineau (1995) . . . . . . . . . . . 195
3 Asian options . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
3.1 Asian options on arithmetic mean . . . . . . . . . . . . 202
3.2 Asian options on geometric mean . . . . . . . . . . . . 203
4 Barrier options . . . . . . . . . . . . . . . . . . . . . . . . . . 205
5 Estimation methods for the sensitivity coefficients or Greeks . . 207
5.1 Pathwise derivative estimates . . . . . . . . . . . . . . . 207
5.2 Likelihood ratio method . . . . . . . . . . . . . . . . . 210
5.3 Retrieval of volatility method . . . . . . . . . . . . . . 213
Front matter ix
Chapter 11 Term structure of interest rates and interest rate derivatives
219
1 General approach and the Vasicek (1977) model . . . . . . . . 220
1.1 General formulation . . . . . . . . . . . . . . . . . . . 220
1.2 Risk neutral approach . . . . . . . . . . . . . . . . . . 222
1.3 Particular case: One factor Vasicek model . . . . . . . . 223
2 The general equilibrium approach: The Cox, Ingersoll and Ross
(CIR, 1985) model . . . . . . . . . . . . . . . . . . . . . . . . 225
3 The affine model of the term structure . . . . . . . . . . . . . . 227
4 Market models . . . . . . . . . . . . . . . . . . . . . . . . . . 228
4.1 The Heath, Jarrow and Morton (HJM, 1992) model . . . 228
4.2 The Brace, Gatarek and Musiela (BGM, 1997) model . . 235
Chapter 12 Credit risk and the valuation of corporate securities 245
1 Valuation of corporate risky debts: The Merton (1974) model . . 246
1.1 The Black and Scholes (1973) model revisited . . . . . 246
1.2 Application of the model to the valuation of a risky debt 248
1.3 Analysis of the debt risk . . . . . . . . . . . . . . . . . 251
1.4 Relation between the firm?s asset volatility and its equity
volatility . . . . . . . . . . . . . . . . . . . . . . . . . 254
2 Insuring debt against default risk . . . . . . . . . . . . . . . . . 256
2.1 Isomorphism between a put option and a financial guarantee
. . . . . . . . . . . . . . . . . . . . . . . . . . . 256
2.2 Insuring the default risk of a risky debt . . . . . . . . . 258
2.3 Establishing a lower bound for the price of the insurance
strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 260
3 Valuation of a risky debt: The reduced-form approach . . . . . . 261
3.1 The discrete case with a zero-coupon bond . . . . . . . 261
3.2 General case in continuous time . . . . . . . . . . . . . 262
Chapter 13 Valuation of portfolios of financial guarantees 265
1 Valuation of a portfolio of loan guarantees . . . . . . . . . . . . 265
1.1 Firms? and guarantor?s dynamics . . . . . . . . . . . . . 266
1.2 Value of loss per unit of debt . . . . . . . . . . . . . . . 267
1.3 Value of guarantee per unit of debt . . . . . . . . . . . . 269
2 Valuation of credit insurance portfolios using Monte Carlo simulations
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
2.1 Stochastic Processes . . . . . . . . . . . . . . . . . . . 272
2.2 Expected shortfall and credit insurance valuation . . . . 273
2.3 MATLAB Program . . . . . . . . . . . . . . . . . . . . 275
Chapter 14 Risk management and Value at Risk (VaR) 281
1 Types of financial risks . . . . . . . . . . . . . . . . . . . . . . 282
1.1 Market risk . . . . . . . . . . . . . . . . . . . . . . . . 282
1.2 Liquidity risk . . . . . . . . . . . . . . . . . . . . . . . 282
1.3 Credit risk . . . . . . . . . . . . . . . . . . . . . . . . 282
1.4 Operational risk . . . . . . . . . . . . . . . . . . . . . . 283
x Stochastic Simulation and Applications in Finance
2 Definition of the Value at Risk (VaR) . . . . . . . . . . . . . . . 283
3 The regulatory environment of Basle . . . . . . . . . . . . . . . 283
3.1 Stress testing . . . . . . . . . . . . . . . . . . . . . . . 285
3.2 Back testing . . . . . . . . . . . . . . . . . . . . . . . . 285
4 Approaches to compute VaR . . . . . . . . . . . . . . . . . . . 286
4.1 Non-parametric approach: Historical simulations . . . . 286
4.2 Parametric approaches . . . . . . . . . . . . . . . . . . 286
5 Computing VaR by Monte Carlo simulations . . . . . . . . . . . 287
5.1 Description of the procedure . . . . . . . . . . . . . . . 287
5.2 Application: VaR of a simple bank account . . . . . . . 288
5.3 Application: VaR of a portfolio composed of one domestic
stock and one foreign stock . . . . . . . . . . . . 291
Chapter 15 VaR and Principal Components Analysis (PCA) 295
1 Introduction to the Principal Components Analysis . . . . . . . 296
1.1 Graphical illustration . . . . . . . . . . . . . . . . . . 296
1.2 Analytical illustration . . . . . . . . . . . . . . . . . . 296
1.3 Illustrative example of the PCA . . . . . . . . . . . . . 299
2 Computing the VaR of a bond portfolio . . . . . . . . . . . . . 302
2.1 Sample description and methodology . . . . . . . . . . 302
2.2 Principal components analysis (PCA) . . . . . . . . . . 304
2.3 Linear interpolation or bootstrapping for the intermediate
spot rates . . . . . . . . . . . . . . . . . . . . . . . 306
2.4 Computing VaR by MC and QMC simulations . . . . . 307
Appendix A Review of mathematics 313
1 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
1.1 Elementary operations on matrices . . . . . . . . . . . . 314
1.2 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . 315
1.3 Properties . . . . . . . . . . . . . . . . . . . . . . . . . 315
1.4 Determinants of matrices . . . . . . . . . . . . . . . . . 316
2 Solution of a system of linear equations . . . . . . . . . . . . . 318
3 Matrix decomposition . . . . . . . . . . . . . . . . . . . . . . . 319
4 Polynomial and linear approximation . . . . . . . . . . . . . . . 320
5 Eigenvectors and eigenvalues of a matrix . . . . . . . . . . . . . 320
Appendix B MATLAB°R Functions 323
Bibliography 327
Index 338
- 名称
- 类型
- 大小
光盘服务联系方式: 020-38250260 客服QQ:4006604884
云图客服:
用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问
Video Player
×
Audio Player
×
pdf Player
×
亲爱的云图用户,
光盘内的文件都可以直接点击浏览哦
无需下载,在线查阅资料!
