Principles of physical chemistry / 2nd ed.

副标题:无

作   者:by Hans Kuhn, Horst-Dieter F鑟rsterling, David H. Waldeck.

分类号:

ISBN:9780470089644

微信扫一扫,移动浏览光盘

简介

Principles of Physical Chemistry , Second Edition uniquely uses simple physical models as well as rigorous treatments for understanding molecular and supramolecular systems and processes. In this way the presentation assists students in developing an intuitive understanding of the subjects as well as skill in quantitative manipulations. The unifying nature of physical chemistry is emphasized in the book by its organization - beginning with atoms and molecules, and proceeding to molecular assemblies of increasing complexity, ending with the emergence of matter that carries information, i.e. the origin of life, a physicochemical process of unique importance. The aim is to show the broad scope and coherence of physical chemistry.

目录


Contents
1 WAVE-PARTICLEDUALITY 3
1.1 Overall Look on QuantumMechanics . . . . . . . . . . . . . 3
1.1.1 Historical Highlights . . . . . . . . . . . . . . . . . . 3
1.1.2 Our Present Approach to Quantum Mechanics . . . 5
1.2 Light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.1 Particle Nature of Light: Photoelectric Effect . . . . 6
1.2.2 Wave Nature of Light: Diffraction . . . . . . . . . . 8
1.2.3 Interpretation of the Experiments . . . . . . . . . . 11
1.3 Electrons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.3.1 Particle Nature of Electrons . . . . . . . . . . . . . . 12
1.3.2 Wave Nature of Electrons . . . . . . . . . . . . . . . 13
1.3.3 Interpretation of the Experiments . . . . . . . . . . 14
1.3.4 Formal Similarity Between Electron and Photon . . 15
1.4 Questions Arising About Wave-Particle Duality . . . . . . . 16
1.4.1 Single Event: Probability Statement; Collective Behavior:
Definite Statement . . . . . . . . . . . . . . . 16
1.4.2 Wave-Particle Duality and the Need to Abandon Familiar
Ways of Thinking . . . . . . . . . . . . . . . . 17
1.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.6 Problems and Exercises . . . . . . . . . . . . . . . . . . . . 19
1.6.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 19
1.6.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 22
1.7 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 28
1.8 Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 28
2 Essential Aspects of Structure and Bonding 35
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.2 Distinct Energy States . . . . . . . . . . . . . . . . . . . . . 36
2.2.1 Atomic Spectra . . . . . . . . . . . . . . . . . . . . . 36
2.2.2 Franck-Hertz Experiment . . . . . . . . . . . . . . . 37
2.3 StandingWaves . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.3.1 Particle Between ParallelWalls . . . . . . . . . . . . 38
2.3.2 Ill-Posed Questions . . . . . . . . . . . . . . . . . . . 42
2.3.3 Electron in a Cubic Box . . . . . . . . . . . . . . . . 43
2.4 Ground State H-Atom . . . . . . . . . . . . . . . . . . . . . 43
2.4.1 Result of Rigorous Treatment (see Chapter 3) . . . . 44
2.4.2 Box Model for H Atom and the Variational Principle 45
2.5 Ground State H+2 . . . . . . . . . . . . . . . . . . . . . . . . 48
2.5.1 Forming H+2 from an H Atom and a Proton . . . . . 48
2.5.2 Box Test Functions for H+2 . . . . . . . . . . . . . . 49
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.7 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 51
2.8 Problems and Exercises . . . . . . . . . . . . . . . . . . . . 51
2.8.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 51
2.8.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 54
2.9 Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.9.1 Box 2.1. H Atom: Energy for Particle in a Box Trial
Function . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.9.2 Box 2.2. H+2 Ground State Energy from Particle in a
Box Trial Functions . . . . . . . . . . . . . . . . . . 58
2.10 Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 60
3 SCHR¿DINGER EQUATION AND THE H-ATOM 67
I Part 3/I: Schr¿dinger Equation 68
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.2 Wave Equation and Schr¿dinger Equation . . . . . . . . . . 69
3.2.1 Wave Equation . . . . . . . . . . . . . . . . . . . . . 69
3.2.2 One-Dimensional Schr¿dinger Equation . . . . . . . 72
3.2.3 Three-Dimensional Schr¿dinger Equation . . . . . . 77
3.3 Normalized Wavefunction: ? = ?2 . . . . . . . . . . . . . . . 80
3.4 Orthogonality of the Wavefunctions . . . . . . . . . . . . . 83
3.4.1 Non-Degenerate Wavefunctions . . . . . . . . . . . . 83
3.4.2 DegenerateWavefunctions . . . . . . . . . . . . . . . 84
3.4.3 Degeneracy Removed in an Electric Field . . . . . . 85
3.5 Bohr Correspondence Principle and Generalized Form of
QuantumMechanics . . . . . . . . . . . . . . . . . . . . . . 86
3.5.1 Bohr Correspondence Principle . . . . . . . . . . . . 86
3.5.2 pop? of a Free Electron and Eigenvalue Equations . 87
3.5.3 ElectronMoving on a Circle . . . . . . . . . . . . . . 89
3.5.4 Degeneracy Removed by Magnetic Field . . . . . . . 90
3.5.5 Operator for Angular Momentum . . . . . . . . . . . 91
3.5.6 Operator i}?/?t and the Time-Dependent Schr¿dinger
Equation . . . . . . . . . . . . . . . . . . . . . . . . 91
3.5.7 Relation Between Time-Independent and Time-Dependent
Schr¿dinger Equation . . . . . . . . . . . . . . . . . 93
3.5.8 Average Values of an Observable (also Called Expectation
Value) . . . . . . . . . . . . . . . . . . . . . . 94
3.6 Heisenberg Uncertainty Principle . . . . . . . . . . . . . . . 95
3.7 Summary of Postulates of Quantum Mechanics . . . . . . . 96
3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
II Part 3/II: Hydrogen Atom 98
3.9 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.10 H Atomin theGround State . . . . . . . . . . . . . . . . . 99
3.10.1 Wavefunction . . . . . . . . . . . . . . . . . . . . . . 99
3.10.2 Energy . . . . . . . . . . . . . . . . . . . . . . . . . . 100
3.10.3 Radial Probability Distribution of Electron . . . . . 101
3.10.4 Most Probable Distance and Average Distance . . . 102
3.10.5 Average Potential Energy and Virial Theorem . . . 104
3.11 H Atomin Excited States . . . . . . . . . . . . . . . . . . . 105
3.11.1 Energies . . . . . . . . . . . . . . . . . . . . . . . . . 105
3.11.2 Wavefunctions . . . . . . . . . . . . . . . . . . . . . 105
3.11.3 Radial Probability Distribution and Average Distance 109
3.11.4 Emission Spectra . . . . . . . . . . . . . . . . . . . . 110
3.11.5 Degeneracy of H-atom Orbitals Can Be Removed by
aMagnetic Field . . . . . . . . . . . . . . . . . . . . 111
3.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
3.13 Problems and Exercises . . . . . . . . . . . . . . . . . . . . 113
3.13.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 113
3.13.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 116
3.14 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.14.1 Foundation 3.1. Electron in a PotentialWell of Finite
Depth . . . . . . . . . . . . . . . . . . . . . . . . . . 119
3.14.2 Foundation 3.2: Orthogonality . . . . . . . . . . . . 124
3.14.3 Foundation 3.3. H Atom: Solution of the Schr¿dinger
Equation . . . . . . . . . . . . . . . . . . . . . . . . 125
3.14.4 Supplement 3.1: H Atom: Angular and Radial Wavefunctions
. . . . . . . . . . . . . . . . . . . . . . . . 129
3.14.5 Supplement 3.2 Uncertainty Principle. . . . . . . . . 135
3.15 Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 139
4 ATOMS AND VARIATION PRINCIPLE 153
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
4.2 Variation Principle . . . . . . . . . . . . . . . . . . . . . . . 153
4.2.1 Justification of the Variation Principle . . . . . . . . 154
4.3 He-Atom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
4.3.1 Ground State of He . . . . . . . . . . . . . . . . . . 158
4.3.2 Indistinguishability of Electrons . . . . . . . . . . . . 160
4.3.3 Excited States of He . . . . . . . . . . . . . . . . . . 160
4.4 Electron Spin and Pauli Exclusion Principle . . . . . . . . 161
4.4.1 Energy Splitting in a Magnetic Field, Electron Paramagnetic
Resonance . . . . . . . . . . . . . . . . . . 161
4.4.2 Spin Variables . . . . . . . . . . . . . . . . . . . . . 163
4.4.3 Antisymmetry Postulate and Pauli Exclusion Principle.164
4.4.4 Singlet-Triplet Splitting - Magnetic Forces Negligible 166
4.5 Many-Electron Atoms . . . . . . . . . . . . . . . . . . . . . 167
4.5.1 Atomic Number Z and Ionization Energy . . . . . . 167
4.5.2 Electronic Structure of the First Three Elements . . 168
4.5.3 Aufbau Principle and Periodic Table . . . . . . . . . 171
4.5.4 Periodic Properties of the Elements . . . . . . . . . 174
4.6 Spin-Orbit Interactions of Electrons in Atoms . . . . . . . . 176
4.6.1 Angular Momentum and Vector Model of Atoms . . 176
4.6.2 Atomic TermSymbols . . . . . . . . . . . . . . . . . 178
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
4.8 Problems and Exercises . . . . . . . . . . . . . . . . . . . . 180
4.8.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 180
4.8.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 182
4.9 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 184
4.10 FOUNDATIONS . . . . . . . . . . . . . . . . . . . . . . . . 184
4.10.1 Foundation 4.1. Proof of Variation Principle . . . . . 184
4.10.2 Foundation 4.2. He Atom: Energy in the Ground State186
4.10.3 Foundation 4.3 The Self-Consistent Field approximation
. . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.10.4 Supplement 4.1: Atomic Term Symbols . . . . . . . 190
4.11 Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
4.11.1 Box 4.1. Perturbation Theory . . . . . . . . . . . . . 194
4.11.2 Box 4.2. Current Loop in a Magnetic Field (Bohr
Magneton) . . . . . . . . . . . . . . . . . . . . . . . 195
4.11.3 Box 4.3. The Electron Spin Postulate . . . . . . . . 196
4.11.4 Box 4.4: SlaterWavefunctions . . . . . . . . . . . . . 197
4.12 Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 198
5 A QUANTITATIVE VIEW OF CHEMICAL BONDING 209
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.2 H+2 Molecule Ion . . . . . . . . . . . . . . . . . . . . . . . . 210
5.2.1 Electron Described by Exact Wavefunction . . . . . 210
5.2.2 Electron Density and the Chemical Bond . . . . . . 212
5.2.3 Electron Described by LCAO Wavefunction . . . . . 214
5.2.4 Comparison of Box Model (Chapter 2) and LCAO
Method . . . . . . . . . . . . . . . . . . . . . . . . . 217
5.2.5 Excited State of H+2 : Bonding and Antibonding Orbitals
. . . . . . . . . . . . . . . . . . . . . . . . . . 218
5.3 H2: A Two Electron System . . . . . . . . . . . . . . . . . . 219
5.3.1 Rigorous Treatment . . . . . . . . . . . . . . . . . . 219
5.3.2 Product of One-Electron Wavefunctions . . . . . . . 221
5.3.3 Indistinguishability of Electrons . . . . . . . . . . . 223
5.3.4 Pauli Exclusion Principle: Electronic Wavefunctions
Must be Antisymmetric. . . . . . . . . . . . . . . . . 224
5.4 Tunneling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
5.4.1 Electron Oscillating Between Protons a and b . . . . 225
5.4.2 Tunneling Barrier and Frequency of Oscillation . . . 226
5.4.3 Importance of Tunneling in Redox Chemistry . . . . 226
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
5.6 Problems and Exercises . . . . . . . . . . . . . . . . . . . . 227
5.6.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 227
5.6.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 228
5.7 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 231
5.8 Foundations . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
5.8.1 Foundation 5.1. H+2 Ion: ExactWavefunction and Energy
. . . . . . . . . . . . . . . . . . . . . . . . . . . 231
5.8.2 Foundation 5.2. Evaluation of LCAO Integrals in H+2 233
5.8.3 Foundation 5.3 Calculation of Evasion Energy (H2
Ground State) . . . . . . . . . . . . . . . . . . . . . 236
5.8.4 Foundation 5.4. Oscillation of Electron between Protons
at Distance d (Tunneling). . . . . . . . . . . . . 237
5.9 Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 241
6 BONDING DESCRIBED BY ELECTRON PAIRS AND
MOLECULAR ORBITALS 251
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
6.2 Electron Pair Bonds . . . . . . . . . . . . . . . . . . . . . . 252
6.2.1 Connectivity of Atoms in Three-Atom Molecules . . 252
6.2.2 Geometries for Electron Pair Bonds . . . . . . . . . 255
6.2.3 Limitations of Electron Pair Model . . . . . . . . . . 259
6.3 Molecular Orbitals . . . . . . . . . . . . . . . . . . . . . . . 260
6.3.1 Homonuclear Diatomics . . . . . . . . . . . . . . . . 260
6.3.2 Heteronuclear Diatomics . . . . . . . . . . . . . . . . 265
6.3.3 Triatomics (H2O) . . . . . . . . . . . . . . . . . . . . 267
6.3.4 Polyatomics . . . . . . . . . . . . . . . . . . . . . . . 270
6.4 Polarity, Bond length, Elasticity . . . . . . . . . . . . . . . 274
6.4.1 Polarity of Bonds and Electronegativity . . . . . . . 274
6.4.2 Covalent Radii and Van der Waals Radii . . . . . . . 276
6.4.3 Stretching, Bending, and Torsion of Bonds . . . . . 279
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
6.6 Boxes and Foundations . . . . . . . . . . . . . . . . . . . . . 283
6.6.1 Box 6.1 Tetrahedral Hybrid Function . . . . . . . . . 283
6.6.2 Foundation 6.1. LCAO-Treatment of Heteronuclear
DiatomicMolecules. . . . . . . . . . . . . . . . . . . 284
6.7 Problems and Exercises . . . . . . . . . . . . . . . . . . . . 287
6.7.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 287
6.7.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 289
6.8 Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 290
7 MOLECULES WITH PI-ELECTRON SYSTEMS 311
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
7.2 Bonding Properties of ã Electrons . . . . . . . . . . . . . . 312
7.2.1 Sigma-Bonded Molecular Skeleton and ã-Electrons . 312
7.2.2 ã-Electrons Described as Electrons in an Effective
Potential V (s) . . . . . . . . . . . . . . . . . . . . . 314
7.3 Free Electron Molecular Orbital (FEMO) Model . . . . . . 315
7.3.1 Ethene, Butadiene, Amidinium. ã-Electron Chains. . 315
7.3.2 Benzene. A ã-Electron Ring . . . . . . . . . . . . . . 317
7.3.3 Charge Density dQ/ds . . . . . . . . . . . . . . . . . 319
7.3.4 BranchedMolecules . . . . . . . . . . . . . . . . . . 321
7.4 Bondlength ConsistentWith Total ã Electron DensityMethod
(BCD) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
7.5 Principles of Density Functional Theory (DFT) . . . . . . . 325
7.6 HMOModel . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
7.6.1 Wavefunctions and Energies . . . . . . . . . . . . . . 326
7.6.2 Application of the HMOMethod to ã-Electron Chains
328
7.6.3 Bond Length and HMOBond Order . . . . . . . . . 331
7.7 Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
7.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
7.9 Exercises and Problems . . . . . . . . . . . . . . . . . . . . 334
7.9.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 334
7.9.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 336
7.10 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 338
7.11 Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 338
7.11.1 Box 7.1: Neglect of the Overlap Integral Sab in HMO 338
7.11.2 Foundation 7.1: Free-Electron Model . . . . . . . . . 339
7.11.3 Foundation 7.2: Self-consistency in Bond Alternation 341
7.11.4 Supplement 7.1: Construction of V (s) in Figure 7.3 . 344
7.11.5 Supplement 7.2: Free-Electron Model, Representation
by Determinants . . . . . . . . . . . . . . . . . 347
7.11.6 Supplement 7.3: HMO Model . . . . . . . . . . . . . 351
7.11.7 Supplement 7.4: Bond Lengths in Fullerene . . . . . 357
7.12 Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 357
8 ABSORPTION AND EMISSION OF LIGHT 371
III Part 8/I: Absorption of Light 372
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
8.2 Excitation of ã Electron Systems . . . . . . . . . . . . . . . 373
8.2.1 Basic Experimental Facts . . . . . . . . . . . . . . . 373
8.2.2 AbsorptionMaxima of Dyes . . . . . . . . . . . . . . 378
8.2.3 Strength and Polarization of Absorption Bands . . . 382
8.2.4 Hetero-Atoms as Probes for Electron Distribution . 386
8.2.5 HOMO-LUMO Gap by Bond Alternation . . . . . . 390
8.2.6 Cyclic ã-Systems . . . . . . . . . . . . . . . . . . . . 392
8.2.7 Coupling of ã Electrons . . . . . . . . . . . . . . . . 397
8.3 Optical Activity . . . . . . . . . . . . . . . . . . . . . . . . 399
8.3.1 Rotatory Dispersion . . . . . . . . . . . . . . . . . . 399
8.3.2 Ellipticity and Circular Dichroism . . . . . . . . . . 401
8.3.3 Anisotropy Factor g for Model in Figure 8.24 . . . . 402
8.3.4 Absolute Configuration of Chiral Molecules. . . . . . 404
8.3.5 Circular Dichroism of Spirobisanthracene . . . . . . 404
8.3.6 Circular Dichroism of Chiral Cyanine Dye . . . . . . 407
8.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 408
IV Part 8/II: Emission of Light 410
8.5 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
8.6 Spontaneous Emission . . . . . . . . . . . . . . . . . . . . . 411
8.6.1 Fluorescence . . . . . . . . . . . . . . . . . . . . . . 412
8.6.2 Phosphorescence and Triplet States . . . . . . . . . 415
8.6.3 Relation Between Fluorescence, Phosphorescence, and
Absorption . . . . . . . . . . . . . . . . . . . . . . . 418
8.6.4 Quenching of Fluorescence. . . . . . . . . . . . . . . 420
8.6.5 Absorption fromExcited States . . . . . . . . . . . . 421
8.7 Stimulated Emission and Laser Action . . . . . . . . . . . . 422
8.7.1 Inversion of Population . . . . . . . . . . . . . . . . 423
8.7.2 Dye Laser Operation . . . . . . . . . . . . . . . . . . 424
8.7.3 Excimer and Exciplex Laser . . . . . . . . . . . . . . 426
8.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
8.9 Problems and Exercises . . . . . . . . . . . . . . . . . . . . 427
8.9.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 427
8.9.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 429
8.10 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 432
8.11 Boxes and Foundations . . . . . . . . . . . . . . . . . . . . . 432
8.11.1 Box 8.1. Law of Lambert-Beer . . . . . . . . . . . . 432
8.11.2 Box 8.2. Derivation of Equation () in Section 8.3.3 . 432
8.11.3 Box 8.3. Relation Between Ellipticity é and ?î . . . 433
8.11.4 Box 8.4 Einstein Coefficients . . . . . . . . . . . . . 434
8.11.5 Foundation 8.1. Integrated Absorption: Classical Oscillator
. . . . . . . . . . . . . . . . . . . . . . . . . . 436
8.11.6 Foundation 8.2. Oscillator Strength: Quantum Mechanical
Treatment . . . . . . . . . . . . . . . . . . . 442
8.11.7 Foundation 8.3. Coupling Transitions with Parallel
TransitionMoments . . . . . . . . . . . . . . . . . . 444
8.11.8 Foundation 8.4. Normal Modes of Coupled Oscillators.447
8.11.9 Foundation 8.5. Fluorescence Life Time . . . . . . . 451
8.11.10Foundation 8.7 Calculation of Repulsion Integrals . 453
8.11.11 Supplement 8.1. Classical and Quantum Mechanical
Description of Light Absorption. . . . . . . . . . . . 455
8.12 Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 460
9 Nuclei: Particle and Wave Properties and Nuclear Spin 483
V Part 9/I: Nuclei: Particle and Wave Properties 484
9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
9.2 RotationalMotion ofMolecules . . . . . . . . . . . . . . . . 486
9.2.1 Diatomic Quantum-Mechanical Rotator . . . . . . . 486
9.2.2 PolyatomicMolecules . . . . . . . . . . . . . . . . . 489
9.2.3 Rotational Spectra . . . . . . . . . . . . . . . . . . . 491
9.3 VibrationalMotion ofMolecules . . . . . . . . . . . . . . . 497
9.3.1 Classical Oscillator . . . . . . . . . . . . . . . . . . . 497
9.3.2 Quantum-Mechanical Harmonic Oscillator . . . . . . 499
9.3.3 Vibrational-Rotational Spectra . . . . . . . . . . . . 502
9.3.4 Quantum-Mechanical Anharmonic Oscillator . . . . 509
9.4 Raman Spectra . . . . . . . . . . . . . . . . . . . . . . . . . 513
9.4.1 Rayleigh Scattering . . . . . . . . . . . . . . . . . . 513
9.4.2 Raman Spectroscopy . . . . . . . . . . . . . . . . . . 514
9.4.3 Rotational Raman Spectra of Heteronuclear Diatomic
Molecules . . . . . . . . . . . . . . . . . . . . . . . . 515
9.4.4 Raman Spectra of Polyatomics . . . . . . . . . . . . 518
9.5 Vibrational Structure of Electronic Spectra . . . . . . . . . 519
9.5.1 Franck-Condon Principle . . . . . . . . . . . . . . . 520
9.5.2 Photoelectron Spectroscopy . . . . . . . . . . . . . . 522
9.5.3 PolyatomicMolecules . . . . . . . . . . . . . . . . . 524
9.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
VI Part 9/II: Nuclear Spin 529
9.7 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 530
9.8 Nuclear Spin: Fundamentals . . . . . . . . . . . . . . . . . 530
9.8.1 Spin of Protons in H2 . . . . . . . . . . . . . . . . . 530
9.8.2 Antisymmetry of Total Wavefunction of a Molecule
Including Electrons and Nuclei . . . . . . . . . . . . 531
9.8.3 Nuclei With Half-Integer Spin (Antisymmetric Total
Wavefunction), Nuclei With Integral Spin (Symmetric
Total Wavefunction) . . . . . . . . . . . . . . . . 533
9.9 NuclearMagnetic Resonance . . . . . . . . . . . . . . . . . 535
9.9.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . 536
9.9.2 Chemical Shift . . . . . . . . . . . . . . . . . . . . . 537
9.9.3 Fine Structure of NMR Spectra . . . . . . . . . . . . 539
9.9.4 NMR Spectroscopy for Determination of Protein Structures
in Solution . . . . . . . . . . . . . . . . . . . . 541
9.9.5 Magnetic Resonance Imaging (MRI) . . . . . . . . . 541
9.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 541
9.11 Problems and Exercises . . . . . . . . . . . . . . . . . . . . 541
9.11.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 541
9.11.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 543
9.12 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 548
9.13 Boxes and Foundations . . . . . . . . . . . . . . . . . . . . 548
9.13.1 Box 9.1. Rotator: ReducedMass . . . . . . . . . . . 548
9.13.2 Box 9.2. Classical Oscillator: Frequency ?0 . . . . . 549
9.13.3 Box 9.3. Oscillator: Reduced Mass of Diatomic Molecules
. . . . . . . . . . . . . . . . . . . . . . . . . . . 550
9.13.4 Foundation 9.1. Selection Rules for Rotation of LinearMolecules
(Absorption Spectra) . . . . . . . . . . 550
9.13.5 Foundation 9.2. Centrifugal Effect on Energy of Diatomic
Rotator . . . . . . . . . . . . . . . . . . . . . 552
9.13.6 Foundation 9.3. Selection Rules for Vibration (Absorption
Spectra) . . . . . . . . . . . . . . . . . . . . 554
9.13.7 Foundation 9.4. Oscillator: Normal Modes of a Triatomic
LinearMolecule . . . . . . . . . . . . . . . . 555
9.13.8 Foundation 9.5. Selection Rules for Rotation of LinearMolecules
(Raman Spectra) . . . . . . . . . . . . 558
9.13.9 Foundation 9.6. Selection Rules for Vibration of DiatomicMolecules
(Raman Spectra) . . . . . . . . . . 560
9.13.10 Supplement 9.1. Rotator: Solution of the Schr¿dinger
Equation . . . . . . . . . . . . . . . . . . . . . . . . 561
9.13.11 Supplement 9.2. Quantum-Mechanical Treatment of
the Harmonic Oscillator . . . . . . . . . . . . . . . . 564
9.14 Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 569
10 Solids and Intermolecular Forces 603
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 603
10.2 Ionic Crystals . . . . . . . . . . . . . . . . . . . . . . . . . . 604
10.2.1 Bond Energy of an Ion Pair . . . . . . . . . . . . . . 604
10.2.2 Lattice Types . . . . . . . . . . . . . . . . . . . . . . 605
10.3 Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 608
10.3.1 Free Electron Model for Conduction Electrons . . . 608
10.3.2 Cohesion Energy ofMetals . . . . . . . . . . . . . . 611
10.3.3 Quantum Wires and Nanostructure . . . . . . . . . . 613
10.4 Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . 616
10.4.1 Soliton Conductors: Polyacetylene . . . . . . . . . . 616
10.4.2 Silicon . . . . . . . . . . . . . . . . . . . . . . . . . . 617
10.4.3 Semiconductor Bandgap . . . . . . . . . . . . . . . . 617
10.4.4 Semiconductor quantumdots . . . . . . . . . . . . . 619
10.5 Molecular Crystals and Intermolecular Forces . . . . . . . . 621
10.5.1 Electrostatic Forces, the Dipole . . . . . . . . . . . . 622
10.5.2 Hydrogen Bonds . . . . . . . . . . . . . . . . . . . . 625
10.5.3 Induction Forces . . . . . . . . . . . . . . . . . . . . 627
10.5.4 Dispersion Forces . . . . . . . . . . . . . . . . . . . . 629
10.5.5 Crystal Packing and Lattice Energy . . . . . . . . . 632
10.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 632
10.7 Problems and Exercises . . . . . . . . . . . . . . . . . . . . 633
10.7.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 633
10.7.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 635
10.8 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 637
10.9 Boxes and Foundations . . . . . . . . . . . . . . . . . . . . . 637
10.9.1 Box 10.1:Madelung Constant . . . . . . . . . . . . . 637
10.9.2 Box 10.2 Properties of a Metal?s Electron Gas . . . . 638
10.9.3 Box 10.3 Dipole and Induction Energies . . . . . . . 641
10.9.4 Box 10.4 Vibrations of H-Bond Aggregates . . . . . 641
10.9.5 Supplement 10.1 Some Features of Crystal Structures
and Lattices . . . . . . . . . . . . . . . . . . . . . . . 642
10.10Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 644
11 THERMAL MOTION OF MOLECULES 661
11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 661
11.2 Kinetic Gas Theory and Temperature . . . . . . . . . . . . 661
11.2.1 ThermalMotion and Pressure . . . . . . . . . . . . . 662
11.2.2 Avogadro?s Law . . . . . . . . . . . . . . . . . . . . 666
11.2.3 Thermal Equilibration and Heat . . . . . . . . . . . 668
11.2.4 Ideal Gas Law and the Definition of Absolute Temperature
. . . . . . . . . . . . . . . . . . . . . . . . . 669
11.2.5 Law of Partial Pressures . . . . . . . . . . . . . . . . 672
11.3 Speed and Collisions of Gas Molecules . . . . . . . . . . . . 672
11.3.1 Average Speed ofMolecules in a Gas . . . . . . . . . 672
11.3.2 Mean Free Path and Number of Collisions . . . . . . 675
11.3.3 Diffusion . . . . . . . . . . . . . . . . . . . . . . . . 678
11.3.4 Viscosity Arising from Collisions of Molecules . . . . 689
11.4 ThermalMotion in Liquids . . . . . . . . . . . . . . . . . . 693
11.4.1 Collisions in Liquids . . . . . . . . . . . . . . . . . . 693
11.4.2 Diffusion Coefficient D of a Liquid . . . . . . . . . . 694
11.4.3 Viscosity of a Liquid . . . . . . . . . . . . . . . . . . 695
11.4.4 Stokes-Einstein Equation . . . . . . . . . . . . . . . 695
11.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 697
11.6 Problems and Exercises . . . . . . . . . . . . . . . . . . . . 697
11.6.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 697
11.6.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 699
11.7 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 702
11.8 Boxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702
11.8.1 Box 11.1.Molar Quantities . . . . . . . . . . . . . . 702
11.8.2 Box 11.2. Pressure on the Wall of a Container and
Number of Collisions with aWall . . . . . . . . . . . 703
11.8.3 Box 11.3. Averaging the Displacement x2 . . . . . . 705
11.8.4 Box 11.4. Averaging the Free Path ? . . . . . . . . . 705
11.8.5 Box 11.5. Atmospheric Distribution . . . . . . . . . 706
11.8.6 Box 11.6. Derivation of the Stokes-Einstein Equation 707
11.8.7 Foundation 11.1 The RandomWalk in Three Dimensions
. . . . . . . . . . . . . . . . . . . . . . . . . . . 707
11.8.8 Foundation 11.2. Intermolecular Forces Affecting the
Mean Free Path . . . . . . . . . . . . . . . . . . . . 709
11.8.9 Supplement 11.1. Law of Hagen-Poiseuille . . . . . . 710
11.9 Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 713
12 Energy Distribution in Molecular Assemblies 727
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 727
12.2 The Boltzmann Distribution Law . . . . . . . . . . . . . . . 728
12.2.1 System Consisting of Two Quantum States . . . . . 728
12.2.2 Systems Consisting of Many Quantum States . . . . 729
12.2.3 Internal Energy U . . . . . . . . . . . . . . . . . . . 731
12.3 Electronic Energy . . . . . . . . . . . . . . . . . . . . . . . . 733
12.4 Vibrational Energy . . . . . . . . . . . . . . . . . . . . . . . 734
12.4.1 Population Number Nn of Harmonic Oscillator . . . 734
12.4.2 Internal Energy Uvib of Diatomic Molecules . . . . . 737
12.4.3 Internal Energy Uvib of Polyatomic Molecules . . . . 738
12.5 Rotational Energy . . . . . . . . . . . . . . . . . . . . . . . 739
12.5.1 Population Number NJ of Rigid Rotator (HeteronuclearMolecules)
. . . . . . . . . . . . . . . . . . . . 739
12.5.2 Internal Energy Urot of Rotation (HeteronuclearMolecules)
. . . . . . . . . . . . . . . . . . . . . . . . . . 741
12.5.3 Homonuclear Diatomic Molecules: Ortho- and Para-
Hydrogen . . . . . . . . . . . . . . . . . . . . . . . . 743
12.6 Translational Energy . . . . . . . . . . . . . . . . . . . . . . 745
12.6.1 Internal Energy Utrans of Translation According to
QuantumMechanics . . . . . . . . . . . . . . . . . . 745
12.6.2 Maxwell-Boltzmann Distribution of Speeds . . . . . 747
12.7 Characteristic Temperature . . . . . . . . . . . . . . . . . . 751
12.8 Proving the Boltzmann Distribution for Distinguishable Particles
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 752
12.8.1 Treatment Using Numerical Examples . . . . . . . . 752
12.8.2 Rigorous Treatment . . . . . . . . . . . . . . . . . . 755
12.9 Proving the Boltzmann Distribution for Indistinguishable
Particles (High Temperature) . . . . . . . . . . . . . . . . . 758
12.10Energy Distribution of Fermions and Bosons Among QuantumStates
. . . . . . . . . . . . . . . . . . . . . . . . . . . 761
12.11Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 764
12.12Problems and Exercises . . . . . . . . . . . . . . . . . . . . 764
12.12.1Exercises . . . . . . . . . . . . . . . . . . . . . . . . 764
12.12.2Problems . . . . . . . . . . . . . . . . . . . . . . . . 768
12.13 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 770
12.14 Boxes and Foundations . . . . . . . . . . . . . . . . . . . . 770
12.14.1Box 12.1. Equipartition Principle in the Classical Limit770
12.14.2Box12.2.Molecular Partition Function Ztrans of Translation
. . . . . . . . . . . . . . . . . . . . . . . . . . 772
12.14.3Box 12.3 Canonical and Microcanonical Ensembles . 773
12.14.4Foundation 12.1 Energy Distribution of Fermions and
Bosons. . . . . . . . . . . . . . . . . . . . . . . . . . 774
12.14.5 Supplement 12.1. Classical Derivation of the One-
DimensionalMaxwell-Boltzmann Distribution of Speeds778
12.14.6Mathematical Appendix: Stirling?s Formula: lnN! =
N ú lnN ? N . . . . . . . . . . . . . . . . . . . . . . 780
12.15 Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 780
13 WORK w, HEAT q, and INTERNAL ENERGY U 795
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 795
13.2 Thermodynamic Systems . . . . . . . . . . . . . . . . . . . 796
13.2.1 Defining System and Surroundings . . . . . . . . . . 796
13.2.2 Defining Thermodynamic States . . . . . . . . . . . 796
13.2.3 Change of State . . . . . . . . . . . . . . . . . . . . 797
13.3 Change of State at Constant Volume (Isochoric Process) . . 799
13.3.1 Change of Internal Energy ?U and the Heat q . . . 799
13.3.2 Heat Capacity CV: Definition . . . . . . . . . . . . . 800
13.3.3 Translational Contribution to CV of a Gas . . . . . 802
13.3.4 Rotational and Vibrational Contributions to CV of a
Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 802
13.3.5 Ortho- and Para-H2: Fascinating Quantum Effects
on CV . . . . . . . . . . . . . . . . . . . . . . . . . . 805
13.3.6 Electronic Contribution to CV (CV,el) . . . . . . . . 805
13.3.7 Heat Capacity and Characteristic Temperature . . . 806
13.3.8 CV of Solids . . . . . . . . . . . . . . . . . . . . . . . 807
13.4 Change of State at Constant Pressure (Isobaric Process) . . 809
13.4.1 Change of Internal Energy ?U; Heat q and work w 809
13.4.2 Enthalpy H and Heat Capacity CP: Definition . . . 811
13.5 Heat Exchange and Chemical Reactions . . . . . . . . . . . 815
13.5.1 Reaction at Constant Volume: ?U . . . . . . . . . . 815
13.5.2 Reaction at Constant Pressure: ?H . . . . . . . . . 817
13.5.3 Temperature Dependence of ?U and ?H . . . . . . 818
13.5.4 Molar Enthalpies of Formation from Elements ?fH¦ 820
13.5.5 Molar Enthalpy of Reaction ?rH¦ . . . . . . . . . . 821
13.5.6 Bond Enthalpies and Bond Dissociation Energies . . 822
13.5.7 Enthalpies and Reaction Cycles . . . . . . . . . . . . 824
13.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 825
13.7 Problems and Exercises . . . . . . . . . . . . . . . . . . . . 826
13.7.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 826
13.7.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 828
13.8 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 830
13.9 Boxes and Foundations . . . . . . . . . . . . . . . . . . . . . 830
13.9.1 Box 13.1. ?U, q, and w in a Change of State . . . . 830
13.9.2 Box 13.2 Temperature of a Flame . . . . . . . . . . 831
13.9.3 Foundation 13.1. How to Calculate
Z T2
T1
?C¦P,múdT . 832
13.9.4 Supplement 13.1. Deriving the Debye Function (CV
of Solids) . . . . . . . . . . . . . . . . . . . . . . . . 835
13.10Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 838
14 REVERSIBLEWORK wrev, REVERSIBLE HEAT qrev, and
ENTROPY S 853
14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 853
14.2 Irreversible and Reversible Changes of State . . . . . . . . . 854
14.2.1 Irreversible Changes . . . . . . . . . . . . . . . . . . 854
14.2.2 Reversible Changes . . . . . . . . . . . . . . . . . . . 855
14.3 Counting the Number of Representations of a Thermodynamic
State, ê . . . . . . . . . . . . . . . . . . . . . . . . . 862
14.3.1 Distribution Possibilities . . . . . . . . . . . . . . . . 862
14.3.2 Number of Representations ê of an Atomic Gas in a
Given Thermodynamic State . . . . . . . . . . . . . 865
14.4 The Entropy: S = k ln ê . . . . . . . . . . . . . . . . . . . . 868
14.4.1 Entropy of Subsystems . . . . . . . . . . . . . . . . . 868
14.4.2 Entropy of Atomic Gas: Sackur-Tetrode Equation . 869
14.5 Entropy Change ?S . . . . . . . . . . . . . . . . . . . . . . 870
14.5.1 Temperature Equilibration: Entropy Increase . . . . 871
14.5.2 Mixing: Entropy Increase . . . . . . . . . . . . . . . 872
14.5.3 Entropy Cannot Decrease for an Isolated System . . 873
14.5.4 Entropy Can Decrease in Closed Systems . . . . . . 874
14.6 Heat and Entropy Change . . . . . . . . . . . . . . . . . . . 874
14.6.1 Analysis for an Ideal Gas . . . . . . . . . . . . . . . 874
14.6.2 Cyclic Processes (?S = 0) and Processes in Isolated
Systems (?S ò 0) . . . . . . . . . . . . . . . . . . . 878
14.6.3 Heat and Change of Entropy in Arbitrary Processes 878
14.7 Thermodynamic Temperature Scale and Cooling . . . . . . 879
14.7.1 Thermodynamic Temperature Scale . . . . . . . . . 879
14.7.2 How Low Can Temperature Go? . . . . . . . . . . . 880
14.8 Entropies of Substances . . . . . . . . . . . . . . . . . . . . 881
14.8.1 Entropy of an Atomic Gas . . . . . . . . . . . . . . . 881
14.8.2 Entropy of Diatomic Gases . . . . . . . . . . . . . . 883
14.8.3 Entropy of PolyatomicGases . . . . . . . . . . . . . 886
14.8.4 Entropy of Different Substances . . . . . . . . . . . . 887
14.9 Laws of Thermodynamics . . . . . . . . . . . . . . . . . . . 890
14.10Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 892
14.11Problems and Exercises . . . . . . . . . . . . . . . . . . . . 893
14.11.1Exercises . . . . . . . . . . . . . . . . . . . . . . . . 893
14.11.2Problems . . . . . . . . . . . . . . . . . . . . . . . . 895
14.12Boxes and Foundations . . . . . . . . . . . . . . . . . . . . . 899
14.12.1Box 14.1. Derivation of Equation (14.34) . . . . . . . 899
14.12.2Box 14.2. Indistinguishable Particles: Change of ?S
when Dividing a System into Subsystems . . . . . . 900
14.12.3Box 14.3. Proof of Proposal 1:
14.12.4Box 14.4. Proof of Proposal 2:
14.12.5Foundation 14.1. Number of Representations ê from
Molecular Partition Function Z . . . . . . . . . . . . 906
14.12.6Foundation 14.2 Entropy of Homonuclear Diatomic
Gases . . . . . . . . . . . . . . . . . . . . . . . . . . 909
14.13Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 911
14.14Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 911
15 General Conditions for Sponataneity and its Application
to Equilibria of Ideal Gases and Dilute Solutions 923
15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 923
15.2 General Conditions for Spontaneity . . . . . . . . . . . . . . 924
15.2.1 Helmholtz Energy A . . . . . . . . . . . . . . . . . . 926
15.2.2 Gibbs Energy G . . . . . . . . . . . . . . . . . . . . 927
15.3 ?G and its Dependence on Temperature . . . . . . . . . . . 928
15.3.1 Molar Gibbs Energy of Formation from Elements
?fG¦ . . . . . . . . . . . . . . . . . . . . . . . . . . 928
15.3.2 Molar Gibbs Energy of Reaction ?rG¦ . . . . . . . 929
15.3.3 Temperature Dependence of ?G¦ . . . . . . . . . . 930
15.4 Pressure Dependence of ?G In Ideal Gases . . . . . . . . . 932
15.4.1 Vapor Pressure (Clausius-Clapeyron Equation) . . . 933
15.4.2 Chemical Evolution of a Gas . . . . . . . . . . . . . 935
15.5 ?G and Chemical Equilibrium in Ideal Gases . . . . . . . . 936
15.5.1 Formal Derivation of Mass Action Law . . . . . . . . 937
15.5.2 Mass Action Law - A Direct Consequence of the Relation
BetweenWork and Heat . . . . . . . . . . . . 939
15.5.3 Applying the Mass Action Law . . . . . . . . . . . . 942
15.5.4 Temperature Dependence of K . . . . . . . . . . . . 946
15.5.5 Pressure Changes and Equilibrium . . . . . . . . . . 948
15.5.6 Reactions Involving Gases and Immiscible Condensed
Species . . . . . . . . . . . . . . . . . . . . . . . . . 950
15.5.7 Equilibrium Constant from Molecular Properties . . 951
15.6 ?G and Equilibrium in Dilute Solution . . . . . . . . . . . 954
15.6.1 Osmotic Pressure and Concentration . . . . . . . . . 954
15.6.2 Depression of Vapor Pressure (Raoult?s law) . . . . . 957
15.6.3 Elevation of Boiling Point and Depression of Melting
Point . . . . . . . . . . . . . . . . . . . . . . . . . . 959
15.6.4 Mass Action Law (Solutions of Neutral Particles) . . 962
15.6.5 Mass Action Law (Solutions of Charged Particles) . 964
15.6.6 Gibbs Energy of Formation in Aqueous Solution . . 964
15.6.7 Part of Reactants or Products in Condensed or Gaseous
State . . . . . . . . . . . . . . . . . . . . . . . . . . . 967
15.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 967
15.8 Problems and Exercises . . . . . . . . . . . . . . . . . . . . 968
15.8.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 968
15.8.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 972
15.9 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 977
15.10Boxes and Foundations . . . . . . . . . . . . . . . . . . . . . 977
15.10.1Box 15.1 Temperature Dependence of ?G . . . . . . 977
15.10.2Box 15.2 Temperature Dependence of the EquilibriumConstant
. . . . . . . . . . . . . . . . . . . . . 978
15.10.3Box 15.3 Raoult?s Law . . . . . . . . . . . . . . . . . 978
15.10.4Box 15.4. How to Obtain ?fG¦aq from ?fG¦ . . . . 979
15.10.5Foundation 15.1. How to Calculate ?GT2 from ?GT1 980
15.10.6Foundation 15.2. Relationship between theMolecular
Partition Function and the Equilibrium Constant . . 981
15.10.7Foundation 15.3. How to Determine ?G¦ for Ions . 983
15.10.8 Supplement 15.1 Isotope Exchange Equilibrium . . . 985
15.11Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 987
16 Classical Thermodynamics in Terms of Differential Calculus,
Phase Equilibria, Real Gases and Solutions 997
VII Part 16/I: Formal Thermodynamics its Application
to Phase Equilibria 998
16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 999
16.2 Internal Energy, Enthalpy,Work, and Heat . . . . . . . . . 999
16.2.1 Work . . . . . . . . . . . . . . . . . . . . . . . . . . 1000
16.2.2 Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . 1001
16.2.3 Relating U and H to Measurable Quantities . . . . . 1002
16.2.4 Maxwell Relations . . . . . . . . . . . . . . . . . . . 1005
16.2.5 An Important Application: Calculating CP ? CV . . 1006
16.3 Spontaneity and Free Energy . . . . . . . . . . . . . . . . . 1008
16.3.1 Helmholtz Energy A . . . . . . . . . . . . . . . . . . 1009
16.3.2 Gibbs Energy G . . . . . . . . . . . . . . . . . . . . 1010
16.4 Phase Equilibria and Phase Transitions . . . . . . . . . . . 1012
xviii
16.4.1 Solid-Liquid Equilibria . . . . . . . . . . . . . . . . . 1013
16.4.2 Liquid-Gas and Solid-Gas Equilibria . . . . . . . . . 1015
16.4.3 Phase Diagrams and Phase Rule . . . . . . . . . . . 1017
16.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1020
16.6 Problems and Exercises . . . . . . . . . . . . . . . . . . . . 1020
16.6.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 1020
16.6.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 1024
VIII Part 16/II: Real Gases 1028
16.7 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1029
16.8 ?G for Real Gases and the Fugacity . . . . . . . . . . . . . 1029
16.9 Equations of State for Real Gases . . . . . . . . . . . . . . . 1031
16.9.1 Hard Sphere Gas . . . . . . . . . . . . . . . . . . . . 1032
16.9.2 Van derWaals Equation . . . . . . . . . . . . . . . . 1033
16.9.3 Critical Point and Van der Waals Constants . . . . . 1034
16.9.4 Virial Equation of State . . . . . . . . . . . . . . . . 1036
16.10Change of State of Real Gases . . . . . . . . . . . . . . . . . 1038
16.10.1Adiabatic Expansion into Vacuum . . . . . . . . . . 1038
16.10.2 Joule-Thomson Effect . . . . . . . . . . . . . . . . . 1040
16.11Chemical Equilibria Involving Real Gases . . . . . . . . . . 1043
16.12Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1045
16.13Problems and Exercises . . . . . . . . . . . . . . . . . . . . 1046
16.13.1Exercises . . . . . . . . . . . . . . . . . . . . . . . . 1046
16.13.2Problems . . . . . . . . . . . . . . . . . . . . . . . . 1050
IX Part 16/III: Real Solutions 1057
16.14Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1058
16.15Partial Molar Quantities and Thermodynamics of Multicomponent
Systems . . . . . . . . . . . . . . . . . . . . . . . . . 1058
16.15.1PartialMolar Volume . . . . . . . . . . . . . . . . . 1058
16.15.2Chemical Potential . . . . . . . . . . . . . . . . . . . 1060
16.15.3Thermodynamic Relations . . . . . . . . . . . . . . . 1061
16.16Activities and Activity Coefficient for Real Solutions . . . . 1063
16.16.1Activity from Vapor Pressure Above a Solution . . . 1063
16.16.2Activity from Osmotic Pressure . . . . . . . . . . . . 1065
16.17Phase Transitions of Solutions . . . . . . . . . . . . . . . . . 1067
16.17.1Elevation of Boiling Point and Depression of Melting
Point. . . . . . . . . . . . . . . . . . . . . . . . . . . 1067
16.17.2 Solutions with Two Volatile Components . . . . . . 1070
16.18Mass Action Law For Reactions in Solution . . . . . . . . . 1071
16.19Electrolyte Solutions and the Debye-H¿ckel Theory . . . . . 1074
16.19.1Debye-H¿ckel Theory for Electrolytes . . . . . . . . 1074
16.20Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077
xix
16.21Problems and Exercises . . . . . . . . . . . . . . . . . . . . 1078
16.21.1Exercises . . . . . . . . . . . . . . . . . . . . . . . . 1078
16.21.2Problems . . . . . . . . . . . . . . . . . . . . . . . . 1083
16.22Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 1088
16.23Boxes and Foundations . . . . . . . . . . . . . . . . . . . . . 1088
16.23.1Box 16.1 Partial and Total Differentials . . . . . . . 1088
16.23.2Box 16.2. Derivation of Equation (16.21). . . . . . . 1090
16.23.3Box 16.3. Clapeyron Equation . . . . . . . . . . . . 1091
16.23.4Box 16.4. Estimation of V1 in the Hard Sphere Model 1092
16.23.5Box 16.5. Critical Constants Tc, Pc, and Vc . . . . . 1093
16.23.6Box 16.6. Joule-Thomson Coefficient and Inversion
Temperature . . . . . . . . . . . . . . . . . . . . . . 1093
16.23.7Box 16.7. Electrical Work to Transfer Ions into Concentrated
Solution . . . . . . . . . . . . . . . . . . . 1095
16.23.8Box 16.8. Activity Coefficient of Solute From Activity
Coefficient of Solvent. . . . . . . . . . . . . . . . 1095
16.23.9Foundation 16.1. Some Formal Thermodynamic Relationships
. . . . . . . . . . . . . . . . . . . . . . . 1096
16.23.10Foundation 16.2. Distribution of Ions at a Charged
Plate . . . . . . . . . . . . . . . . . . . . . . . . . . . 1103
16.23.11Supplement 16.1 ? Molecular Perspective on Solid-
Gas Equilibria . . . . . . . . . . . . . . . . . . . . . 1106
16.23.12Supplement 16.2. Virial Equation of State . . . . . . 1110
16.23.13Supplement 16.3 Distinguishing Between Phases . . 1112
16.24Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1113
17 REACTION EQUILIBRIA IN AQUEOUS SOLUTIONS
AND BIOSYSTEMS 1127
17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1127
17.2 Proton Transfer Reactions: Dissociation of Weak Acids . . . 1128
17.2.1 Henderson-Hasselbalch Equation . . . . . . . . . . . 1128
17.2.2 Degree of Dissociation in Aqueous Solution . . . . . 1130
17.2.3 Degree of Dissociation in a Buffer Solution . . . . . 1131
17.2.4 Titration Curve of aWeak Acid . . . . . . . . . . . 1132
17.3 Stepwise Proton Transfer . . . . . . . . . . . . . . . . . . . 1133
17.3.1 Diprotic Acid . . . . . . . . . . . . . . . . . . . . . . 1133
17.3.2 Amino Acids . . . . . . . . . . . . . . . . . . . . . . 1135
17.4 Electron Transfer Reactions . . . . . . . . . . . . . . . . . . 1137
17.4.1 Electron Transfer from Metal to Proton: Dissolution
ofMetals in Acid . . . . . . . . . . . . . . . . . . . . 1137
17.4.2 Electron Transfer from Metal 1 to Metal 2 Ion: Coupled
Redox Reactions . . . . . . . . . . . . . . . . . 1139
17.4.3 Electron Transfer to Proton at pH 7: ?G¦0 . . . . . 1140
17.4.4 Photoinduced Electron Transfer . . . . . . . . . . . . 1141
17.5 Electron Transfer Coupled with Proton Transfer . . . . . . 1143
xx
17.6 Group Transfer Reactions in Biochemistry . . . . . . . . . . 1146
17.6.1 Group Transfer Potential . . . . . . . . . . . . . . . 1148
17.6.2 Coupled Reactions in Biology . . . . . . . . . . . . . 1149
17.7 Bioenergetics . . . . . . . . . . . . . . . . . . . . . . . . . . 1150
17.7.1 Synthesis of Glucose . . . . . . . . . . . . . . . . . . 1150
17.7.2 Combustion of Glucose . . . . . . . . . . . . . . . . 1152
17.7.3 Energy Balance of Formation and Degradation (Combustion)
of Glucose . . . . . . . . . . . . . . . . . . . 1152
17.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1153
17.9 Problems and Exercises . . . . . . . . . . . . . . . . . . . . 1153
17.9.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 1153
17.9.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 1156
17.10Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 1158
17.11Boxes and Foundations . . . . . . . . . . . . . . . . . . . . . 1159
17.11.1Foundation 17.1 Titration of Acetic Acid by NaOH . 1159
17.11.2Foundation 17.2 Two Coupled Chemical Equilibria. 1161
17.12Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 1164
18 Chemical Reactions in Electrochemical Cells 1171
18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1171
18.2 ?G and Potential E of an Electrochemical Cell . . . . . . . 1172
18.3 Simple Cells and Nernst Equation . . . . . . . . . . . . . . 1175
18.3.1 Metal/Metal Ions . . . . . . . . . . . . . . . . . . . . 1175
18.3.2 Gas Electrodes . . . . . . . . . . . . . . . . . . . . . 1177
18.3.3 Nernst Equation and Standard Potential . . . . . . . 1178
18.4 Standard Potential E¦ and Reference Electrodes . . . . . . 1180
18.4.1 Practical Determination of E¦ . . . . . . . . . . . . 1181
18.4.2 Absolute Electrode Potential . . . . . . . . . . . . . 1182
18.5 Use of Electrochemical Cells for Thermodynamic Measurements
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187
18.5.1 pH Electrodes . . . . . . . . . . . . . . . . . . . . . . 1187
18.5.2 Measurement of Mean Activity Coefficient ?ñ
. . . . 1188
18.5.3 Measurement of Equilibrium Constant . . . . . . . . 1191
18.5.4 Liquid-Liquid Junctions . . . . . . . . . . . . . . . . 1191
18.6 Applications of Electrochemical Cells . . . . . . . . . . . . . 1194
18.6.1 Galvanic Cells. Batteries and Accumulators . . . . . 1194
18.6.2 Fuel Cells . . . . . . . . . . . . . . . . . . . . . . . . 1197
18.6.3 Electrolysis and Electrosynthesis . . . . . . . . . . . 1198
18.6.4 Overvoltage . . . . . . . . . . . . . . . . . . . . . . . 1199
18.7 Conductivity of Electrolyte Solutions . . . . . . . . . . . . . 1201
18.7.1 Mobility of Ions . . . . . . . . . . . . . . . . . . . . . 1201
18.7.2 Generalization . . . . . . . . . . . . . . . . . . . . . 1202
18.7.3 Mobility of H+ . . . . . . . . . . . . . . . . . . . . . 1204
18.7.4 Ion Transport throughMembranes . . . . . . . . . . 1205
18.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1206
xxi
18.9 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 1206
18.10Exercises and Problems . . . . . . . . . . . . . . . . . . . . 1206
18.10.1Exercises . . . . . . . . . . . . . . . . . . . . . . . . 1206
18.10.2Problems . . . . . . . . . . . . . . . . . . . . . . . . 1209
18.11Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 1214
18.12Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 1214
19 Chemical Kinetics 1225
19.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1225
19.2 Collision Theory for Gas Reactions . . . . . . . . . . . . . . 1226
19.2.1 Counting the Number of Collisions . . . . . . . . . . 1226
19.2.2 Activation . . . . . . . . . . . . . . . . . . . . . . . . 1228
19.2.3 Steric Factor . . . . . . . . . . . . . . . . . . . . . . 1229
19.3 Rate Equation for Elementary Bimolecular Reactions . . . . 1229
19.3.1 Rate Constant and Frequency Factor for a Gas Phase
Reaction . . . . . . . . . . . . . . . . . . . . . . . . . 1230
19.3.2 Rate Constant and Frequency Factor for a Reaction
in Solution . . . . . . . . . . . . . . . . . . . . . . . 1232
19.4 Rate Laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1236
19.4.1 What is a Rate Law? . . . . . . . . . . . . . . . . . 1237
19.4.2 Zero Order Rate Law . . . . . . . . . . . . . . . . . 1237
19.4.3 First Order Rate Law . . . . . . . . . . . . . . . . . 1238
19.4.4 Second Order Rate Law . . . . . . . . . . . . . . . . 1239
19.5 Activation Energy and Frequency Factor . . . . . . . . . . . 1242
19.5.1 Arrhenius Plot . . . . . . . . . . . . . . . . . . . . . 1242
19.5.2 The Chemist?s Rule of Thumb . . . . . . . . . . . . 1243
19.6 Combinations of Elementary Reactions . . . . . . . . . . . . 1243
19.6.1 Reactions Leading to Equilibrium . . . . . . . . . . 1243
19.6.2 Parallel Reactions . . . . . . . . . . . . . . . . . . . 1246
19.6.3 Consecutive Reactions . . . . . . . . . . . . . . . . . 1248
19.7 Complex Reactions . . . . . . . . . . . . . . . . . . . . . . . 1249
19.7.1 Approximation Methods . . . . . . . . . . . . . . . . 1249
19.7.2 Lindemann-HinshelwoodMechanism . . . . . . . . . 1252
19.7.3 Chain Reactions . . . . . . . . . . . . . . . . . . . . 1254
19.7.4 Enzyme Reactions (Michaelis-Menten Mechanism) . 1256
19.7.5 Autocatalytic Reactions . . . . . . . . . . . . . . . . 1259
19.7.6 Bistability . . . . . . . . . . . . . . . . . . . . . . . . 1263
19.7.7 Oscillating Reactions . . . . . . . . . . . . . . . . . . 1264
19.7.8 ChemicalWaves . . . . . . . . . . . . . . . . . . . . 1266
19.8 ExperimentalMethods . . . . . . . . . . . . . . . . . . . . . 1268
19.8.1 Monitor Reaction Progress and Sampling . . . . . . 1268
19.8.2 FlowMethods . . . . . . . . . . . . . . . . . . . . . 1269
19.8.3 QuenchingMethods . . . . . . . . . . . . . . . . . . 1269
19.8.4 Flash Photolysis . . . . . . . . . . . . . . . . . . . . 1270
19.8.5 RelaxationMethod . . . . . . . . . . . . . . . . . . . 1271
xxii
19.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1274
19.10Problems and Exercises . . . . . . . . . . . . . . . . . . . . 1274
19.10.1Exercises . . . . . . . . . . . . . . . . . . . . . . . . 1274
19.10.2Problems . . . . . . . . . . . . . . . . . . . . . . . . 1280
19.11Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 1283
19.12Boxes and Foundations . . . . . . . . . . . . . . . . . . . . . 1283
19.12.1Box 19.1. Activation Factor . . . . . . . . . . . . . . 1283
19.12.2Box 19.2. Rate Law for Chain Reaction . . . . . . . 1284
19.12.3Box 19.3. Critical Bromide Concentration . . . . . . 1285
19.12.4Box 19.4. Rate Constants of Belousov-Zhabotinsky
Reaction . . . . . . . . . . . . . . . . . . . . . . . . . 1286
19.13Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 1287
20 Transition States and Chemical Reactions 1307
20.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1307
20.2 Transition State in a Statistical View . . . . . . . . . . . . . 1307
20.2.1 Transition State Theory for Bimolecular Reactions . 1308
20.2.2 Transition State Theory for Unimolecular Reactions 1315
20.2.3 Applications of Transition State Theory . . . . . . . 1317
20.3 Transition State in a Dynamical View . . . . . . . . . . . . 1323
20.3.1 Transition State Spectroscopy . . . . . . . . . . . . 1325
20.3.2 Reaction Cross-Sections and the Thermal Rate Constant
. . . . . . . . . . . . . . . . . . . . . . . . . . . 1326
20.4 Transition State Theory and Reactions in Solution . . . . . 1331
20.4.1 Unimolecular Reactions and Frictional Coupling . . 1331
20.4.2 Dissociation Reactions . . . . . . . . . . . . . . . . . 1333
20.4.3 Proton Transfer Reactions . . . . . . . . . . . . . . . 1335
20.5 Electron Transfer Reactions . . . . . . . . . . . . . . . . . . 1338
20.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1338
20.7 Foundations and Boxes . . . . . . . . . . . . . . . . . . . . . 1339
20.7.1 Box 20.1. Rigorous Derivation of Rate Equation (20.16)1339
20.7.2 Box 20.2. Comparison of Transition State Theory To
Collision Theory . . . . . . . . . . . . . . . . . . . . 1340
20.7.3 Supplement 20.1 Thermal Rate Constants . . . . . . 1342
20.7.4 Supplement 20.2 Derivation of the Kramers formula.
. . . . . . . . . . . . . . . . . . . . . . . . . . 1344
20.8 Problems and Exercises . . . . . . . . . . . . . . . . . . . . 1350
20.8.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 1350
20.8.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 1358
20.9 Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 1366
21 MACROMOLECULES 1377
21.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1377
21.2 RandomCoil . . . . . . . . . . . . . . . . . . . . . . . . . . 1377
21.2.1 A Chain of Statistical Chain Elements . . . . . . . . 1379
xxiii
21.3 Measuring the Length of Statistical Chain Elements . . . . 1381
21.3.1 Light Scattering . . . . . . . . . . . . . . . . . . . . 1381
21.3.2 Hydrodynamics: Coil Approximated as a Sphere . . 1383
21.3.3 Hydrodynamics: Macroscopic Modelling . . . . . . . 1387
21.4 Uncoiling a Coil and its Recoiling . . . . . . . . . . . . . . . 1392
21.4.1 Unraveling Coil by Force Applied at Chain Ends . . 1392
21.4.2 Fully Unraveling a Coil in a Flowing Medium . . . . 1394
21.4.3 Partially Unraveling a Coil in a Flowing Medium . . 1396
21.4.4 Restoring Coil . . . . . . . . . . . . . . . . . . . . . 1398
21.5 Proteins as Biopolymers . . . . . . . . . . . . . . . . . . . . 1399
21.6 Motion Through Entangled Polymer Chains . . . . . . . . . 1402
21.6.1 Moving Random Coil by Winding Through Meshwork:
Gel Electrophoresis of DNA Fragments . . . . 1402
21.7 Rubber Elasticity . . . . . . . . . . . . . . . . . . . . . . . . 1404
21.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1405
21.9 Problems and Exercises . . . . . . . . . . . . . . . . . . . . 1406
21.9.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 1406
21.9.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 1410
21.10Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 1415
21.11Boxes and Foundations . . . . . . . . . . . . . . . . . . . . . 1415
21.11.1Box 21.1. Statistical Chain Elements . . . . . . . . . 1415
21.11.2Box 21.2. Bending of DNA Strand . . . . . . . . . . 1416
21.11.3Box 21.3. Force Contracting Chain Held at Chain Ends1417
21.11.4Box 21.4 Extension of an Unraveled Coil . . . . . . . 1418
21.11.5Box 21.5: Time to Restore Random Coil from Unraveled
Chain . . . . . . . . . . . . . . . . . . . . . . 1419
21.11.6Box 21.6. Diffusion of a Random Coil in a Gel in the
Absence of an Electric Field and Force-Induced Motion1420
21.11.7Foundation 21.1: Light Scattering of Macromolecules 1422
21.11.8 Supplement 21.1. Stretching a Chain . . . . . . . . . 1424
21.11.9 Supplement 21.2. Viscosity of Dilute Solutions of Polymers
andMacroscopicModels . . . . . . . . . . . . . 1425
21.12Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 1430
22 ORGANIZED MOLECULAR ASSEMBLIES 1447
22.1 Liquid Surfaces and Liquid/Liquid Interfaces . . . . . . . . 1447
22.1.1 Surface Tension and Interfacial Tension . . . . . . . 1447
22.1.2 Surface ActiveMolecules (Surfactants) . . . . . . . . 1451
22.2 Films on Solid Surfaces . . . . . . . . . . . . . . . . . . . . 1454
22.2.1 Langmuir-Blodgett Films (LB Films) . . . . . . . . . 1454
22.2.2 Self-AssembledMonolayers (SAM) . . . . . . . . . . 1455
22.2.3 Contact Angle . . . . . . . . . . . . . . . . . . . . . 1456
22.3 Micelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1457
22.3.1 Spherical Micelles. Critical Micelle Concentration . . 1458
22.3.2 Geometry of Packing . . . . . . . . . . . . . . . . . . 1463
xxiv
22.4 Membranes . . . . . . . . . . . . . . . . . . . . . . . . . . . 1464
22.4.1 Liposomes . . . . . . . . . . . . . . . . . . . . . . . . 1465
22.4.2 Soap lamella . . . . . . . . . . . . . . . . . . . . . . 1465
22.4.3 Black lipid membranes . . . . . . . . . . . . . . . . . 1465
22.5 Biomembranes . . . . . . . . . . . . . . . . . . . . . . . . . 1468
22.5.1 Lateral Diffusion . . . . . . . . . . . . . . . . . . . . 1468
22.5.2 Ion Transport Through aMembrane . . . . . . . . . 1469
22.5.3 Transport of Small Protein Through a Membrane . . 1471
22.6 Liquid Crystals . . . . . . . . . . . . . . . . . . . . . . . . . 1472
22.6.1 Optics Applications of Liquid Crystals . . . . . . . . 1473
22.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1475
22.8 Problems and Exercises . . . . . . . . . . . . . . . . . . . . 1476
22.8.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 1476
22.8.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 1482
22.9 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 1486
22.10Boxes and Foundations . . . . . . . . . . . . . . . . . . . . . 1486
22.10.1Box 22.1. Surface Film; Gibbs Adsorption Equation 1486
22.10.2 Supplement 22.1 Head-to-Head Repulsion Energy . . 1487
22.11Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 1488
23 SUPRAMOLECULAR MACHINES 1507
23.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1507
23.2 Idea of a Supramolecular Machine . . . . . . . . . . . . . . 1508
23.2.1 A Simple Energy Transduction Device . . . . . . . . 1508
23.2.2 Programmed InterlockingMolecules . . . . . . . . . 1508
23.3 Manipulating PhotonMotion . . . . . . . . . . . . . . . . . 1510
23.3.1 Energy Transfer Between DyeMolecules. FRET: Ruler
in Nanometer Range. SNOM . . . . . . . . . . . . . 1510
23.3.2 Functional Unit by Coupling Chromophores . . . . . 1514
23.3.3 Dye Aggregate as Energy Harvesting Device . . . . . 1515
23.3.4 Solar Energy Harvesting in Biosystems . . . . . . . . 1519
23.3.5 Manipulating Luminescence Lifetime by Programming
Echo Radiation Field. . . . . . . . . . . . . . . . . . 1521
23.4 Manipulating ElectronMotion . . . . . . . . . . . . . . . . 1523
23.4.1 Photoinduced Electron Transfer in Designed Monolayer
Assemblies . . . . . . . . . . . . . . . . . . . . 1523
23.4.2 Tunneling Current Through Monolayers . . . . . . . 1526
23.4.3 Conduction Through Single Molecules . . . . . . . . 1529
23.4.4 ConjugatedMolecular Tethers . . . . . . . . . . . . 1532
23.4.5 Electron Transfer in Protein . . . . . . . . . . . . . . 1533
23.4.6 Solar Energy Conversion: The Electron Pump of Plants
and Bacteria . . . . . . . . . . . . . . . . . . . . . . 1535
23.4.7 Electron Transfer in SoftMedium . . . . . . . . . . 1538
23.4.8 Artificial Photoinduced Electron Pumping . . . . . . 1539
23.4.9 Inverted Region of Electron Transfer Reactions . . . 1540
xxv
23.5 Manipulating NuclearMotion . . . . . . . . . . . . . . . . . 1542
23.5.1 Light-Induced Change of Monolayer Properties . . . 1542
23.5.2 Mechanical Switching Devices . . . . . . . . . . . . . 1545
23.5.3 Photoinduced Sequence of Amplification Steps: The
Visual System . . . . . . . . . . . . . . . . . . . . . 1545
23.5.4 Solar Energy Conversion in Halobacteria . . . . . . . 1546
23.5.5 Biomotors . . . . . . . . . . . . . . . . . . . . . . . . 1549
23.5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . 1559
23.6 Problems and Exercises . . . . . . . . . . . . . . . . . . . . 1559
23.6.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 1559
23.6.2 Problems . . . . . . . . . . . . . . . . . . . . . . . . 1566
23.7 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 1570
23.8 Boxes and Foundations . . . . . . . . . . . . . . . . . . . . . 1570
23.8.1 Box 23.1 Manipulation of Monolayer Assemblies . . 1570
23.8.2 Box 23.2. Polarization of Retinal in the Coulomb
Field of Amino Acids D85 and D212 . . . . . . . . . 1571
23.8.3 Foundation 23.1. Energy Transfer . . . . . . . . . . . 1572
23.8.4 Foundation 23.2. Electron Transfer Between ã-Electron
Systems . . . . . . . . . . . . . . . . . . . . . . . . . 1575
23.8.5 Foundation 23.3. Marcus Equation . . . . . . . . . . 1582
23.8.6 Foundation 23.4. Chloride Ion Pump and Sensory Receptor
of Halobacteria . . . . . . . . . . . . . . . . . 1585
23.8.7 Supplement 23.1. Energy Transfer from Exciton to
Acceptor . . . . . . . . . . . . . . . . . . . . . . . . 1587
23.8.8 Supplement 23.2: Radiation Echo Field . . . . . . . 1589
23.8.9 Supplement 23.3 Calculation of Ebarrier . . . . . . . 1592
23.9 Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 1593
24 ORIGIN OF LIFE. MATTER CARRYING INFORMATION.
1629
24.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1629
24.2 Investigation of Complex Systems . . . . . . . . . . . . . . . 1630
24.2.1 Need for SimplifyingModels . . . . . . . . . . . . . 1630
24.2.2 Increasing Simplification with Increasing Stages of
Complexity . . . . . . . . . . . . . . . . . . . . . . . 1630
24.3 Can Life Emerge by Physicochemical Processes? . . . . . . 1630
24.3.1 Bioevolution as a Process of Learning How to Survive
as a Species . . . . . . . . . . . . . . . . . . . . . . 1630
24.3.2 Model Case for the Learning Mechanism . . . . . . . 1631
24.4 Modeling the Emergence of the Genetic Apparatus . . . . . 1633
24.4.1 BasicQuestions . . . . . . . . . . . . . . . . . . . . . 1633
24.4.2 Evolution of the Universe and Evolution of Life: the
Big Bang and the Tiny Bang . . . . . . . . . . . . . 1635
24.4.3 Fundamental Requirements . . . . . . . . . . . . . . 1635
24.4.4 Definition of Life in the Present Context . . . . . . . 1637
1
24.4.5 Modelling a Continuous Sequence of Physicochemical
Processes Leading to a Genetic Apparatus . . . . . . 1637
24.5 General Aspects of Life?s Emergence and Evolution . . . . . 1641
24.5.1 Information and Knowledge . . . . . . . . . . . . . . 1641
24.5.2 Processing Information and Genesis of Information
and Knowledge . . . . . . . . . . . . . . . . . . . . . 1642
24.5.3 Limits of Physicochemical Ways of Thinking . . . . 1645
24.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 1647
24.7 Problems and Exercises . . . . . . . . . . . . . . . . . . . . 1648
24.7.1 Exercises . . . . . . . . . . . . . . . . . . . . . . . . 1648
24.8 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . 1650
24.9 Boxes and Foundations . . . . . . . . . . . . . . . . . . . . . 1650
24.9.1 Box 24.1.Genetic Apparatus . . . . . . . . . . . . . 1650
24.9.2 Foundation 24.1. Maxwell?s Demon . . . . . . . . . . 1650
24.9.3 Supplement 24.1: Search for Logical Conditions Driving
the Emergence of a Genetic Translation Device . . . 1653
24.9.4 Supplement 24.2. The Emergence of a Simple Genetic
Apparatus Viewed as a Supramolecular Engineering
Problem. A Thought Experiment. . . . . . . . . . . 1656
24.9.5 Supplement 24.3. Attempts to Model the Origin of Life1660
24.9.6 Supplement 23.4. Later Evolutionary Steps: Emergence
of an EyeWith Lens . . . . . . . . . . . . . . 1666
24.10Figure Captions . . . . . . . . . . . . . . . . . . . . . . . . . 1667

已确认勘误

次印刷

页码 勘误内容 提交人 修订印次

Principles of physical chemistry / 2nd ed.
    • 名称
    • 类型
    • 大小

    光盘服务联系方式: 020-38250260    客服QQ:4006604884

    意见反馈

    14:15

    关闭

    云图客服:

    尊敬的用户,您好!您有任何提议或者建议都可以在此提出来,我们会谦虚地接受任何意见。

    或者您是想咨询:

    用户发送的提问,这种方式就需要有位在线客服来回答用户的问题,这种 就属于对话式的,问题是这种提问是否需要用户登录才能提问

    Video Player
    ×
    Audio Player
    ×
    pdf Player
    ×
    Current View

    看过该图书的还喜欢

    some pictures

    解忧杂货店

    东野圭吾 (作者), 李盈春 (译者)

    亲爱的云图用户,
    光盘内的文件都可以直接点击浏览哦

    无需下载,在线查阅资料!

    loading icon