TensorFlow深度学习——深入理解人工智能算法设计
作者: 龙良曲
出版社:清华大学出版社 2020年08月
简介:
人工智能是近年来全球*为火热的研究领域之一,尤其是随着深度学习算法研究的突破,人工智能技术被应用到图片识别、机器翻译、语音助手、自动驾驶等一系列领域中,取得了前所未有的智能水平。深度学习算法涵盖的内容非常前沿和广袤,国内外出版的相关书籍并不算多,有些侧重于理论层面的推导,有些侧重于框架API的介绍,鲜有能结合深度学习算法理论和实战讲解的教材。为了使读者能够深刻理解深度学习算法精髓,本书以探索问题式叙述风格展开,从*简单的人工智能问题入手,一步步地引导读者分析和解决并发现新的问题,重温当年算法设计人员的探索之路。本书介绍了深度学习算法所需要的基础数学理论、TensorFlow 2.x框架的基本使用方法、回归问题、分类问题、反向传播算法、梯度下降算法、过拟合、全连接网络、卷积神经网络、循环神经网络、自编码器、生成对抗网络、强化学习、迁移学习等主流和前沿知识。针对每个算法或模型,本书均详细分析了采用TensorFlow框架的实现方法,并基于多个常见的经典数据集进行了算法模型的实战,如基于MNIST和CIFAR10数据集的图片识别实战、基于IMDB数据集的文本分析实战、基于动漫头像数据集的图片生成实战和基于OpenAI Gym环境的平衡杆游戏实战等。通过原理与实战结合的方式,读者可*限度地理解算法理论,同时提升工程实现能力。本书可作为高等院校人工智能课程的教材,也可供从事人工智能、深度学习算法研究与开发人员自学或参考。