Bayesian methods : an analysis for statisticians and interdisciplinary researchers = 贝叶斯方法 /
作者: Thomas Leonard, John S.J. Hsu著.
出版社:
简介: “本书提供了有关最新现代贝叶斯统计方法的重要题材,文笔流畅,语言优美,其突出的特点是包括大量实际应用,涉及若干领域中AIC和BIC模型选择标准的运用和对比,通过效用理论以独特方式处理贝叶斯决策论,并论述了贝叶斯过程的频度特性,配备了可以扩展与加深书中内容的有趣和适中的自学练习。”
——Michael J.Evans,Mathematical Review
“以严密、纯熟的文笔介绍贝叶斯建模的基本原则,选材深思熟虑,按照研究生层次引入贝叶斯方法。”
——Journal of the American Statistical Association
贝叶斯“后验分布”或“预测分布”是对有关未知参或未来观测所需了解的每项事物的概括。本书以一种强有力和贴切的方式说明了如何运用贝叶斯统计技术,引导读者从具体数据中推测有关科学、医疗与社会问题的结论。本书解释了贝叶斯方法论所需的一些细微假设,并展示了如何运用这些假设去获取准确结论。本书所介绍的各种方法对计算机模拟的频度特性方面也非常适用。
本书生动地概述了有关费希尔方法(频度方法),同时全面强调了似然性,适合作为主流统计学的教程。本书讲述了效用理论的进展以及时间序列和预测,从而也适合计量经济学的学生阅读。另外,本书还包括线性模型、范畴数据分析、生存竞争分析、随机效应模型和非线性平滑等内容。
本书提供了许多运行实例、自学练习和实际应用,可作为高年级本科生和研究生的教材,同时也可供其他交叉学科的研究人员阅读。